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1. INTRODUCTION

A wide range of subjects have been treated in this contract. We have devoted time to
the development and applications of two first-principles computational methods: one, the full-
potential linear muffin tin orbital (FP-LMTO) method is somewhat mature and highly accurate,
while the other, linear combination of atomic orbitals (LCAO), is less accurate but more flexible
and is easily incorporated into the other calculations we have in place, e.g., surface Green's
function methods and CPA. Tight binding has also been used.

These methods have been applied to solve a host of mechanical-property problems
including elastic constants, cleavage energies, sublimation energies, interactions between surface
atoms relating to their surface order-disorder state and growth theory, surface segregation, bulk
order-disorder theory and phase stability, the effect of dislocations on electronic transport and
electro-optic properties of semiconductors, the Ni-Al intermnetallic phase diagram, planar fault
energies in L12 alloys, high-performance structural metal alloy design, and a contribution to
understanding the Jones theory of metal alloying. Many of these subjects have been brought to
publishable conclusions. Whenever possible, we have presented our detailed results in the form
of preprints and reprints, with only brief summaries of the work given here. In instances where
the research is incomplete, we have given somewhat longer expositions.



2. SEMICONDUCTORS

2.1 DEVELOPMENT OF AB INITIO THEORIES

2.1.1 KKR Theory

Many of our previous calculations were based on the empirical tight-binding method
(ETB). This method is most useful as an interpolation scheme in which the properties of refer-
ence materials are well known. The accuracy is expected to deteriorate if ETB is used to extrap-
olate too far from known systems. For example, ETB should be reliable for alloy systems
because the end points of the alloys, namely the constituent compounds, are well described by
ETB and the alloy structures are very similar to those of the hosts. However, we are not as con-
fident regarding surface calculations because the broken bonds at the surface are very different
from the tetrahedral bonds of the bulk. For surface problems, an ab iniuo approach is more
suitable.

In addition to the full-potential LMTO method which has been established at SRI (see
Section 2.1.3), efforts have been made to develop an ab initio LCAO scheme and a multiple-
scattering KKR (MSKKR) Green's function theory (Yeh et al., 1990; Appendix A) using space-
filling potentials. The reason for studying LCAO is that it can be transformed into the ETB form
for which we have developed many useful techniques that can be employed directly, such as the
CPA and the difference equation approach (see Section 2.3.1). Similarly, once we can deal with
nonspherical potentials in Green's function formalism, we can extend the KKR-CPA and defect
calculations using self-consistent potentials to semiconductors and alloys.

A numerical test of the MSKKR theory using the Mathieu potential shows excellent con-
vergence for bands up to 1.5 Ry (Yeh et al., 1990). This method has been implemented in a total
energy calculation for silicon and HI-V compounds within the Harris functional approximation.
Results from the first successful test of the LCAO on diatomic molecules have been obtained.
The extension to bulk semiconductors using limited basis and the Harris approximation has also
been obtained. To make these approaches applicable to surfaces, more work incorporating self-
consistency with an expanded basis set is needed.

2.1.2 Unear Combination of Atomic Orbltals: Theory

The empirical band structures, even when they are carefully constructed for the cases
studied, are limited in versatility and accuracy, while most of the existing first-principles band
structures are computationally too demanding to study many realistic problems. The best-and a
numerically tractable-first-principle theory is given by the local density approximation or LDA
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965; Baraff and Schluter, 1983).
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One of the widely used methods to solve LDA equations is based on self-consistent
pseudopotentials with plane-wave-basis expansions (Ihm and Cohen, 1980; Nielson and Martin,
1985; Ismail et al., 1991). The electronic and structural properties such as total energies, lattice
constants, bulk moduli, and phonon frequencies are often in excellent agreement with experi-
ments. Although this method has a built-in simplicity in constructing the Hamiltonian, the
matrix size can be unmanageably large in studies, for example, of superlattices, defects, surfaces,
and high-field transport that involve a large number of atoms. Other accurate methods that use
linearized muffin-tin orbitals (Andersen, Jepsen, and Sob, 1987; van Schilfgaarde and
Methfessel, 1990), and linearized, augmented plane waves (Zunger and Freeman, 1977; Mbaye,
Ferreira, and Zunger, 1987) will also be time consuming, particularly in the studies listed above.

One way to overcome this hurdle is to use the linear combination of atomic orbitals
(LCAO) method in a tight-binding (TB) form. This first-principles tight-binding (FPTB)
Hamiltonian uses pseudo-atomic orbitals as the basis for a self-consistently determined
Hamiltonian matrix. In a simple application, these orbitals are computed self-consistently from a
free-atom calculation within LDA and used in the solid with a non-self-consistent Harris approx-
imation (Harris, 1985). This method has been shown to be computationally fast and precise
enough to be useful for a variety of problems (Jensen and Sankey, 1987, 1989; Sankey and
Niklewski, 1989; Chelikowsky and Louie, 1984; Vanderbilt and Louie, 1984). A major advan-
tage of the LCAO method over other methods is its availability in the familiar TB form which is
perfectly suitable for all the tasks studied here. In particular, incorporation of this Hamiltonian in
the Green's function approach whether to study surface-driven ordering, to obtain coherent
potential approximation (CPA) limited alloy band structures, or to study the effect of impurities
and defects on band structures, is straightforward.

2.1.2.1 LCAO Band Structures

In this section, we briefly describe the LCAO method. Details will be published else-
where. By assuming only four orbitals (sp3) per atom, we studied the band structures and
structural properties of Group IV elements and their alloys, and of III-V compounds. Readily
available pseudopotentials are used within LDA in the Kohn-Sham equation for individual
atoms. A wave function obtained in this way at a site Q is denoted as Ja j), where a is s, PX py,
or Pz, and j is anion or cation. In the solid, the wave functions, which are assumed to be a linear
combination of these atomic wave functions, satisfy the Kohn-Sham (KS) eigenvalue equation

+ Voe + Vnonoc + Vcou + xc] Vi = i (1)

where i is the band index. The coulomb and exchange-correlation (xc) terms depend on the input
electron density, pin(r) and the output charge density Pout = 2ZiNP. The equation is solved for
self-consistency (i.e., pin = poui); gtxc is the total derivative of p time exc with respect to p. Then
the total energy is

Eot = 2. ei + -Ij dr pVcou +J dr p(r) [c c(P) - xc(p) ] (2)

When the lattice periodicity exists, a Bloch state for a given crystal momentum, k, is constructed
as

3



la kj) = []L1t2 Y, ek(+V 'i) .fi (3)

In addition, we expand the Bloch states in terms of plane waves, and we get

Ia kj)= YC (k + G)I(k + G)) (4)
G

From Eqs. (1) and (2), we get the coefficients C, in terms of the Fourier coefficients of
the a orbital of the j atom. Once we obtain the Fourier transform of the kinetic energy and all
potentials of the KS equation, then a k-space 8 x 8 Hamiltonian is easily constructed.

As a test of accuracy of the results obtained with these LCAO Hamiltonian, we initially
carried out the calculations with an assumption that the charge density in the solid i, a superpo-
sition of atomic charge densities. This approximation, commonly known as the Harris approxi-
mation (Harris, 1985), removes the self-consistency loop and has been shown to yield reliable
trends in bulk semiconductors. In this approximation, the Coulomb potential, Vcoul, which
depends on the total charge density, also reduces to the sum of contributions from individual
atoms. However, the exchange correlation term is the most difficult one because of its compli-
cated dependence on the charge density. A Fourier transform of the exchange correlation poten-
tial is obtained by direct space integration within a parallelopiped unit cell that contains two
atoms. Ten special k-points are used to calculate the Etot as given in Eq. (2)

To study problems such as molecules, defects, and surfaces, it is necessary to have
Hamiltonian matrix elements connecting any two orbitals in real space. For a periodic lattice,
such a matrix can be obtained by simply integrating the above-calculated k-space Hamiltonian
(with an appropriate phase factor) over the Brillouin Zone (BZ). For a general case, we con-
structed the real-space Hamiltonian by expanding off-site functions in spherical harmonics
defined with respect to a fixed origin. All integrals are then carried out in direct space. For the
case with lattice periodicity, Hamiltonians obtained with these two methods have been tested and
shown to agree with one another.

Band structure and total energy calculations have been carried out for Group IV elements,
SiC, SiGe, and HI-V compounds. The structural properties such as equilibrium bond length, do;
cohesive energy per bond, Eb; and bulk modulus, Bo are obtained.

The results obtained for silicon are in excellent agreement with experimental results. The
do and Bo were larger than the experimental values by 0.4% and 3%, respectively. The calcu-
lated cohesive energy per atom, -5.20 eV, agrees well with experiment (-4.64 eV) after subtract-
ing the spin-polarization energy of -0.6 eV per atom. (The experimental ground state, as dictated
by Hund's rule, has two p-electrons with the same spin, where the uncorrected calculations con-
sider p-electrons with opposite spin).

The results obtained for other Group IV elements, such as germanium and carbon, are in
reasonable agreement with experiments. For germanium, do and Bo differ from experiment by
0.4% and -11%, respectively, and Eb is 2.36 eV, which is larger than the experimental value of
1.94 eV. For carbon, do and Bo differ from experiments by -2.6% and 10%, respectively, and Eb
is 3.99 eV, which is again larger than the experimental value of 1.68 eV.
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Corresponding results for III-V compounds are considerably worse. In general, the do is
off by 2 to 8%, B0 is off by 10 to 40%, and Eb is deeper by 0.2 to 0.9 eV. Because of the charge
transfer from cation to anion, the wave functions in the solid are more localized than the corre-
sponding atomic-wave functions. Linear combinations of atomic functions do not adequately
describe the wave function in the solid. To improve matters, the basis functions are made more
compact by multiplying with a function (van Schilfgaarde and Methfessel, 1990),

1
ePr-0+ 1)

and renormalizing. The parameters P and ro are then varied to obtain a local maximum in the
cohesive energy. As a general guiding rule, we start with twice the value of Pauling radius for ro.
Values of I and 0.5 for J3 in carbon and germanium respectively, give excellent structural prop-
erties. Without further modifications, the total energy calculations are carried out for SiC and
SiGe compounds. The calculated excess energy that favors ordering in SiC and segregation in
SiGe alloys are in agreement (within a few millielectron volts) with experimental values.

Although such a (maximizing) procedure improved the accuracy, the disagreement was
still very large for III-V compounds. We find that increasing ro and 0 reduces both the equilib-
rium bond length and the bulk modulus. However, when these parameters are varied slightly in
the neighborhood of these 'equilibrium' values, excellent fits to experimental values are obtained
for arsenide and phosphide compounds of germanium, aluminum, and indium.

2.1.2.2 Green's Function

In all the studies we carried out previously, we used Green's functions with an assump-
tion that the basis set is orthonormal. However, the LCAO band structure described in the previ-
ous section has a basis set that is far from orthonormal. Hence, Green's function calculations
have to be modified to the case of nonorthogonal basis orbitals. We define a Green's function G,

(E+iB-H)G= 1 (5)

When the basis set is orthogonal,

(E + i8 )Gap - 1: I-I, S ap (6)

a,

then

Gap oi)~vi3 (7)
i E+iS-e

where HI ci) = cihii). However, when the basis set is not orthonormal, Eq. (5) becomes

(E + iS )Scm, G,1 - I H., Gm = SOs (8)
a'

It can be shown that all observables are related to Gm. For example, the density of states (DOS)
is

5



p=-_.1Im Gm. (9)

Note that G., is not a simple extension of Eq. (7). Now consider a Green's function Gk that
satisfies

(E + i. )So - I G,-p (10)

Then

Gk = (11)
ES - H + i8

whose matrix elements are obtained as in Eq. (7). Now we can see from Eqs. (8) and (9),

Gm = GkS . (12)

Hence the prescription to calculate the Green's function, when the basis set is nonorthogonal, is:

(a) Obtain the Green's function in the usual way after replacing E + i8 by ES + i8.
This is known as the contravariant Green's function, Gk.

(b) Then multiply Gk by the overlap matrix S to obtain the mixed-mode Green's func-
tion, Gm. DOS is obtained from this Green's function as shown in Eq. (8).

After careful analysis, we are convinced that the difference equation method (see Section
2.3.1) we developed (Chen et al., 1989) can be modified to follow the above prescription. In
addition to the H matrix, we have to calculate inter- and intralayer overlap matrices. Because the
difference equation method is valid, calculation of surface and interface Green's functions are
obtained without any difficulty. However, we find that the term values and interaction matrix
elements of surface atoms are much different (as much as 2 eV in some cases) from their corre-
sponding bulk values. In such cases, the surface DOS is obtained in two steps. First, by assum-
ing the same term values on the surface, we use the difference equation method to obtain Gk.
We then consider the difference in term values to obtain the final Green's function in a Dyson's
expansion. Again, nonorthogonality requires some generalization and it has been included.

2.1.2.3 Generalized Perturbation Method

In the generalized perturbation method (GPM), the excess energy required to substitute
CPA atoms by the constituent atoms is calculated from the Green's function obtained by Dyson's
expansion (Turchi et al., 1987). Because of nonorthogonality, we must consider the change in
the overlap matrix, in addition to the change in the potential. Once we obtain Gk with the
Dyson's expansion, Gm is obtained by multiplying with the appropriate S matrix. The change in
the DOS and energy are obtained from Gm in the usual way.

The existing LCAO Hamiltonian works well for Group IV elements and alloys
(Krishnamurthy et al., 1992). However, the Hamiltonian for III-V compounds is better than the
usual empirical TB Hamiltonian only in the sense that it has fewer (two) parameters and the spa-
tial dependence of all matrix elements are known. The Harris approximation with only four
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orbitals seems to break down for ionic compounds. For a truly first-principles LCAO
Hamiltonian, we must remove the Harris approximation and obtain results self-consistently.
Also, true atomic wave functions are more extended than required to describe th wave function
in the solid. A systematic development of pseudo-atomic wave functions with d-orbitals is nec-
essary for ionic compounds.

Our calculations of band structures suggests that interactions up to third neighbors should
be included for reliable results. The existing Green's function programs consider only nearest
bilayer plane interactions. For surfaces oriented in the (100) and (110) directions, this does not
include all interactions up to third neighbors. We are generalizing the method by increasing the
basic unit plane to include four monolayers. The ordering induced on these surfaces can then be
studied.

Although the calculated valence bands agree very well with experiments, LDA does not
produce the band gap nor some portion of the conduction bands accurately. The accurate eval-
uation of surface states may require accurate conduction bands. With a self-energy-like correc-
tion that contains the effect of exchange and correlation among electrons, known as GW approx-
imation, a fully accurate band structure can be obtained (Hybertson and Louie, 1986, 1987,
1988). This self-energy term, which is nonlocal, energy dependent, and non-Hermitian, is evalu-
ated from the dressed Green's function, G, and dynamical screening matrix.

2.1.3 Lirboar Muffin Tin Orbitals: Theory

In the past, all aspects of our Green's function and CPA work used empirical tight-bind-
ing methods. Although these methods are computationally easy to deal with, they suffer from a
lack of general applicability and in many cases result in large quantitative uncertainties. How-
ever, much of our current and proposed work lies beyond the domain of simple tight-binding
Hamiltonians; thus, our recent efforts have centered strongly around the use of an ab initio
electronic structure method known as the linear muffin tin orbitals (LMTO) method. While we
have recently obtained a number of results with this method (several are described below), we
have until now mostly experimented with the various approximations within the method and
their limitations.

Density-functional methods are quite powerful and remarkably accurate for a wide range
of materials. Moreover, they are suitable for both electronic structure and mechanical properties.
For example, native defect equilibrium has been studied in HgTe (Berding et al., 1992; Appendix
B) which is an important feature in the performance of HgCdTe-based focal plane arrays. Their
chief drawback has been that they are quite "heavy"; that is, they are difficult to implement and
very slow to execute. The LMTO method is an efficient basis set; indeed, it is the most efficient
of all electronic structure methods. Its primary drawback has lain in the spherical approxima-
tions made to the potential that render it unsuitable for calculating mechanical properties of
structures of low symmetry. However, recent versions of the method remove that limitation.

We now possess three versions of the method.

The first uses the classical atomic spheres potential approximation but is highly
efficient; we have used it extensively in studies of, for example, Schottky barriers.

7



SlThe second uses a proper full-potential approximation, and thus solves the local-
density functional nearly exactly. This method is still heavy and cumbersome, but
is important to provide a reference for the correct local-density result.

Finally, an efficient version of the second code implements the new "Harris-
Foulkes" method (e.g., Foulkes and Haydock, 1989). The central idea here is toIreevaluate the density-functional at the input density and make a sufficiently good
guess for the density that it obviates the need for self-consistency. A superposition
of spherical (e.g., free-atomic) densities seems to work remarkably well in almostIall cases studied. Moreover, the resulting Hamiltonian looks quite similar to empir-
ical tight-binding Hamilto.'ans. Should this method prove to be sufficiently accu-
rate (as it seems to be), it should be an attractive alternative to the widely acclaimed
Car-Parinello method (e.g., see Galli et al., 1989). The Harris functional, used in
conjunction with the LMTO method (or some comparably efficient method) will be
essential to the study of extended defects such as dislocations.

Figure 1 shows some results, in part to demonstrate the precision of the Harris method,
but also with a view toward computing results of interest to us. Figure 1(a) compares the theoret-

ical and experimental values of the lattice constant and cohesive energy; Figure 1(b) compares
the theoretical and experimental values of the elastic constant, c II - c12 , and the bulk modulus,
B. Although the theoretical results calculated using the Harris method fare less well than do
fully self-consistent calculations, the agreement with experiment is still quite good. Note that
errors in the cohesive energy are due to problems with the local-density approximation, not due
to Harris.

Figure 2 is closer to the practical applications our contract is aimed at. We seek a "super-
modulus" effect in a thin superlattice of CdTe/ZnTe. In Figure 2, the superlattice consists of
alternating monolayers, along the <110> direction, of CdTe and ZnTe. Interestingly, the bulk
modulus is approximately linear (or sublinear) in the composition, while the shear modulus is
supralinear. This shear modulus corresponds approximately to the measurements of Young's
modulus by Farthing et al. (private communication).

2.2 THEORY OF ELASTIC CONSTANTS

This work emphasizes three aspects: (1) analytical relations between elastic constants
and microscopic atomic quantities, (2) quantitative calculation of elastic properties, and
(3) extension to other mechanical properties. Most of our work concerns the first two aspects.
Harrison's bond orbital model (BOM) provides a very good framework for the analytical work.
This model treats the diamond and zinc blende semiconductors on equal footings. It does not
need to treat the Madelung energies separately for polar systems, as required in the valence force
field model. Although Harrison's universal parameters give only a qualitative prediction, the
trends are correct. More important, these analytical expressions relate the three supposedly inde-
pendent elastic moduli by the following formula:

9/C44 = 6/(C1 I - C1 2) + 4/B

8
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normal to [110] planes, keeping lateral area fixed.

where B is the bulk modulus. A test using the experimental values shows that this formula is
satisfied to within 10% for all semiconductors. We have also modified the parameters to make
the BOM a quantitative model.

For quantitative calculations, a tight-binding Hamiltonian similar to that used in BOM is
adopted. The difference is that the Hamiltonian is diagonalized exactly in this approach whereas
it is treated perturbatively and locally in BOM. There are four adjustable parme~ters: two (f and
n) for the first-neighbor tight-binding Hamiltonian matrix elements, V = f V0 (d0/d)n; and two
(u0 and m) for the repulsive pair energy, u - u0 (dold)m . Here, V0 is Harrison's universal matrix
element, d is the distance between the nearest-neighbor atoms, and do is its equilibrium value.
These four parameters (f, n, u0, m) are adjusted so that the model produces the best experimental
values for the bond length, cohesive energy, bulk modulus, and C I - C12. These parameters
have been obtained for all common diamond and zinc blende semiconductors. The consistency
of the model has also been confirmed by its ability to predict other elastic properties such as C44
and TO phonon frequencies (Yeh et al., 1991; Appendix C). The resulting Hamiltonian has also
been used in other studies (Sher et al., Appendix D).

2.3 SURFACES, INTERFACES, AND SUPERLAI"TICES

2.3.1 Ditrence-Equatlon Approach

The difference-equation approach is a tight-binding (TB) based approach to layered struc-
tures without the need for using supercells. This method takes full advantage of the repeated
units in these structures. The TB equations in the repeated regions are solved in terms of the
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characteristic solutions to the difference equations which relate the expansion coefficients of the
energy eigen wavefunction of a layer to those of the neighboring layers. The final problem is
reduced to a small set of boundary equations. This approach also facilitates the calculation of
Green's functions. Some analytical results for one dimension have been obtained and the theory
has been generalized to three-dimensional systems. Several applications of this approach have
also been made (Chen et a. 1989; Schick et al. 1989, Appendix E; Chen et al. 1990; Berding et
al. 1990a).

2.3.2 Cleavage Energy

One application of the difference-equation approach is the calculation of the surface and
cleavage energies in semiconductors. We applied this method to a representative group of semi-
conductors including silicon, GaAs, CdTe, and HgTe, using a second-neighbor tight-binding
Hamiltonian. A Green's function method was used which exploits the symmetry of the surface
problem and leads to a calculation of the surface energy directly, without requiring us to take the
difference between two large numbers. We find Ej( 11) = 1360 ergs/cm 2 in GaAs and
E(1 10) = 1000, 180, and 120 ergs/cm 2 in GaAs, CdTe, and HgTe, respectively. These results
are in good agreement with the available experimental values. The results of this work have
been published in the Journal of Applied Physics (Berding et al., 1990a).

The LCAO Green's function developed above for the surface was first used to calculate
the cleavage energy for silicon whose cleavage plane is (111). The result was excellent bulk
band structures of silicon using our FPTB Hamiltonian, which includes all interactions out to the
third neighbor. Incidentally, when the planar unit in the difference equation approach is bilay-
ered, all interactions up to third neighbor are included in the interplane Hamiltonian. In other
words, previously written Green's function programs can be used with appropriate generalization
for nonorthogonality and without further modification. The cleavage energy is calculated as
described previously (Berding et al., 1990a). The calculated cleavage energy of 1260 ergs/cm2

for silicon is in excellent agreement with experiment at 1140-1240 ergs/cm2. Similarly, the cal-
culated energy for GaAs agrees well previously reported value (Berding et al., 1990a). However,
the (110) plane is the cleavage plane for GaAs, and such calculations have not yet been carried
out for that plane. This is because not all third-neighbor interactions are included in the interbi-
planar interaction for the (110) surface, and this requires some modification to existing Green's
function programs. These modifications are under way.

2.3.3 Energetics of Atoms on Surfaces

A second-neighbor tight-binding model and the Green's function based on the difference
equation approach in Section 2.3.1 were used to calculate the removal energies of constituent
atoms from semiconductor surfaces. We found the energies from a fully covered surface to be
substantially different from those from a nearly empty surface. These energies also vary from
surface to surface and do not exhibit any simple relationship with the bulk cohesive energies.
The energetics and a simple thermodynamic growth model are shown to explain anomalies in the
MBE growth of HgCdTe. Similar approaches have also been used to calculate the cleavage
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energies of semiconductors. The results compare well with available data. Several papers have
been published on this subject (Krishnamurthy et al. 1990a, Krishnamurthy et al. 1990b,
Krishnamurthy et al. 1990c).

We studied surface-induced ordering using the above-described procedure of surface and
LCAO GPM Green's function. Although no ordering is expected on a (11 1)-oriented silicon sur-
face, we carried out the calculations for that surface as a test of accuracy. The interatom interac-
tions on the surface are strongly attractive so-in agreement with experiments-we predict
growth with the formation of islands (i.e., two dimensional layer-by-layer growth). We carried
out similar calculations on the (11 1)B surface of Gao.5Al0.5 As. The excess pair energy is zero
within the accuracy of our calculations. However, the energy has to be less than zero (in our sign
convention) to obtain ordering and indeed, experiments on the (11 1)B surface of this alloy do not
find ordering. Ordering has been observed on (100) and (110) oriented surfaces of Gao.5Al0.5 As
alloys. Once our Green's function programs are extended to consider a four-layer unit plane,
instead of the bilayer unit plane, we will be able to study phenomena related to other surfaces.

2.3.4 Surface Segregation In Alloys

Pseudo-binary semiconductor alloys almost always have a surface concentration that is
different from the bulk in order to maintain a constant chemical potential for each layer in the
alloy. We have calculated the degree of surface segregation in these alloys, with numerical
examples presented for Hgl.xCdxTe and Hgl.xZnxTe. The enthalpy responsible for segregation
is the difference in the energies for moving an A or B atom from the bulk alloy to the surface.
There are two major contributions to this energy process: (1) a bond-breaking mechanism,
whereby the element with the lowest surface energy segregates to the surface; and (2) strain
energy, where the dilute element in the compound is favored to segregate to the surface to alle-
viate the strain due to mismatch of the AC and BC bond lengths. We use the quasi-chemical
approximation to calculate the free energy and hence the chemical potentials. Our results indi-
cate that there is strong surface enrichment of mercury in Hgl-xCdxTe while there is less surface
segregation of mercury in Hgl.xZnxTe than the low x values appropriate for infrared applica-
tions. Mercury segregation to the surface will lower the bandgap or may turn the surface into a
semimetal, thereby affecting the passivation of the surface. Several papers have been published
on this subject (see, for example, Patrick et al. 1989, Berding et al. 1990c).

2.4 ORDER-DISORDER THEORY

2.4.1 Formation Energies and Phase Stability

The tight-binding model discussed above was used to calculate the formation energies,
bond lengths, and bulk moduli of a number of III-V and I-VI semiconductor alloys. The input
parameters are those of the constituent compounds. The model is then applied to alloys without
further adjustment. We conclude that none of the ordered alloys found experimentally is in its
stable bulk state at the growth temperatures (Yeh et al. 1991). Although the alloy excess ener-
gies can be negative, if the reference constituent compounds are constrained to match the sub-
strate lattice used in the epitaxial growth, their magnitudes are not large enough to account for
the observed ordering. We present a possible explanation of the observed states in terms of a
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barrier that prevents the metastable ordered alloy from decomposing into separate phases. How-
ever, this explanation applies only to alloys with a large lattice mismatch between the constituent
systems. The next step is to see if surface ordering is taking place and, if it is, what mechanism
keeps the alloy from relaxing to the stable phases.

2.4.2 Critical Temperature of Order-Disorder Transitions

There is a large literature on order-disorder transition of alloys that ranges from semiem-
pirical to highly theoretical models. The semiempirical models include the Bragg-Williams ideal
solution models, Guggenheim's quasi-chemical approximation (QCA), the Ising model with
empirical pair interactions, Stringfellow's 8-doping model, and Fedder and Muller's improve-
ment of the 8doping concept which removes some imprecision. All these methods miss portions
of the problem: they either treat the excess energy of clusters in the pseudobinary alloy Ai-xBx
or A I-xBxC as being independent of concentration, or they make poor approximations to the
combinatorial analysis of the number of permitted arrangements of atoms in the alloy. No theory
has been published that relies on near-first-principles methods and proper combinatorics and that
makes the relationship between all these methods and the true physics clear (and, more impor-
tant, reaches proper conclusions). This material has been assembled into Chapter 4 of a book on
semiconductor alloys being written by A.-B. Chen and A. Sher. A draft copy of Chapter 4 is
appended to this report (Appendix F); we emphasize that the chapter is still undergoing revision.

2.4.3 Cluster Energies

We are recalculating the cluster energies that enter into the statistical mechanical calcula-
tion of correlations and phase diagrams. We are using the new parameterized tight-binding
model discussed in Section 2.2.1. Previously, the 16-bond cluster energies were calculated from
the sum of strain and chemical energies (Sher et al., 1987; Sher et al., 1991, Appendix G). Strain
energies were calculated using Keating's force constant model, while chemical energies were
calculated using Harrison's metallization terms within the extended bond-orbital model. In the
present approach, we are using a cluster calculation similar to that used in computing the vacancy
formation energies (Berding et al., 1990b), in which the 16-bond cluster Hamiltonian is directly
diagonalized. We are using our empirical tight-binding Hamiltonian discussed in Section 2.2.1.
In this cluster calculation, the positions of the twelve atoms at the edge of the cluster are held
fixed while the positions of the five alloy atoms in the cluster are permitted to relax to the equi-
librium position. Boundary conditions can be imposed by specifying the position of the atoms at
the cluster edges. We are including the nonisotropic boundary conditions appropriate to the cal-
culation clusters on a lattice-constraining substrate. Cluster energies will be used in the statisti-
cal mechanics to calculate correlations on epitaxial surfaces. Results of this work will be pub-
lished upon completion.

2.5 DISLOCATIONS AND ELECTRO-OPTIC PROPERTIES

It is observed that dislocations in semiconductors, in particular GaAs and HgCdTe, have
a significant impact on their electro-optic and transport properties. Both in GaAs at room tem-
perature and Hgo.sCdo.2Te at 77 K, it is found that dislocations begin to modify the minority
carrier lifetime, or equivalently the diffusion length, for dislocation densities in excess of
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105 cm-2, i.e., average separations of -30 pm. At higher densities, the lifetime decreases
quadratically with the dislocation density for low carrier concentrations. This indicates that the
dislocations are somehow combining to speed the recombination process. In GaAs, as the carrier
concentration increases, starting from low values of -1015 cm- 3, the lifetime increases for a fixed
dislocation density of -105 cm- 2; for high-enough concentrations, where Shockley Reed impu-
rity recombination becomes dominant, lifetime decreases once more. Similar effects have been
observed in HgCdTe.

In an attempt to understand the origin of these and other effects we have calculated the
state densities in and near the bandgap of all four types of edge dislocations found in zinc blende
structured semiconductors. The four types are those that terminate at cores on anion or cation
lines either leaving one (the "shuffle" set) or three (the "glide" set) dangling bonds projecting
into the core. Some of these dislocation types at 0 K exhibit partially filled states in the gap, and
others have some filled conduction band states, or empty valance band states. Thus, those dis-
locations with partially filled gap states will be surrounded by depletion layers in both n- and
p-type material, and the others will have either depletion or accumulation layers around them,
depending on the carrier type of the host material. The behavior of these four different kinds of
dislocations as they cross a p-n junction remains to be sorted out.

The dislocations with depletion layers serve as efficient recombination centers since their
fields attract minority carriers into the core where recombination is fast. The effective capture
cross section is high because, in the simplest picture its length scale is set by the depletion layer
thickness. However, even this large length (-1 pm in material with a low carrier concentration
of -1015 cm- 3) is still small compared to the -30 gim separation between dislocations when the
dislocations begin to become effective lifetime killers.

The fields associated with a depletion layer, in this case around a line charge, do not fall
abruptly at its edge. For a line charge, the field outside the depletion layer is asymptotically

(1 _ )2 1/ (r -,RD)
proportional to (1)e) 4 where r is the radial coordinate centered on the core in cylindrical
coordinates, RD is the dislocation radius, and LD is the Debye length. (For a point charge

screened by free carriers, the fields fall faster, as (rk)e--.) If the distance a minority carrier

drifts in these depletion layer fields in the minority carrier lifetime is comparable to the separa-
tion between dislocations, the dislocations become effective lifetime killers. We are still in the
process of making accurate calculations, but our preliminary estimates indicate that at low carrier
concentrations, where LD is longest, the fields are sufficiently large in these high-mobility mate-
rials to become effective. Obviously they will be more effective in p-type material, where the
minority species are the high-mobility electrons in the conduction band.

Given this mechanism, the reason the lifetime at first increases with carrier concentration
becomes a natural consequence of the fact that LD is inversely proportional to the square root of
the carrier concentration.

We expect the nonlinear lifetime variation with dislocation density will also be a conse-
quence of the long ranges of the fields, becoming most important when the average separation
between dislocations approaches the order of the depletion layer radius. This study is continuing,
and must be completed before our speculations can be placed on a firm-enough footing to
warrant refereed publication.
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3. FIRST-PRINCIPLES APPROACH TO THE PLASTIC PROPERTIES
OF HIGH-TEMPERATURE ALLOYS

3.1 INTRODUCTION

With this end-of-year report, current funding for this program having ceased although we
are at the entrance to potentially the most productive phase of this work, we also attempt some
final conclusions. In retrospect, our work over the past two years has led us into some isolated
fields such as the theoretical strength and the Jones theory of alloying. In parallel, however, we
have been developing the methods and understanding to tackle our original long-term goals. Of
Tasks 6 and 7 proposed in our extension of 16 March 1990, Task 7 is completed and Task 6 is as
good as completed. We have also made major inroads into the program as it was envisioned
developing into Years 3 and 4: we have made real progress toward our goal of alloy design from
first-principles quantum mechanics. We look forward to continuing this work-hopefully under
the aegis of AFOSR-in the future.

The topics in this section are of three categories.

(i) The two items that complete Tasks 6 and 7.

(ii) Our new work on the transition-metal trialuminides, which embodies a genuine
attempt at alloy design and looks towards the development of our work in future.

(iii) "Jones's theory of the Hume-Rothery phases revisited" is the tide of a new paper
(a draft of which is included as Appendix H) written in collaboration with
M. Methfessel and D.G. Pettifor. This work, although somewhat outside the
purview of our original proposal, has a significant impact in theoretical alloy
design.

We report on these topics in the following four sections.

3.2 THE NI-Al PHASE DIAGRAM

Task 7 was to compute the Ni-Al phase diagram using our total energy methods for cal-
culating internal energy differences and a suitable approximate scheme for the entropy. This has
been done in a collaboration between ourselves and a group at INPG, France. The work is to
appear shortly in Journal of Physics: Condensed Matter and a copy is included as Appendix 1.

3.3 PLANAR FAULT ENERGIES IN LI 2 ALLOYS

Calculations of planar fault energies (antiphase boundary or APB, complex stacking fault
or CSF, and superlattice intrinsic stacking fault or SISF) are of central importance in theories of
deformation in the high-temperature intermetallics, as was emphasized in our original proposal
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and is still evident, even though new theories of anomalous yield have appeared since then
(Dimiduk, 1991). Task 6 was to compute these energies in Ni3Al with particular attention paid
to the translation state of the defect. We say that this task is as good as completed because while
we have the results now for Pt3AI, those for Cu3Au and Ni3Al have not been tested for conver-
gence with respect to supercell size. We can say, though, that in these two cases the errors are
approximately 15% and that the defect energies are overestimated by this order of magnitude. So
far we have comprehensive data only on (111) defects; the study will not be complete until the
energies of (001) APBs are found, since it is the ratio of (001) to (111) APB energies that is of
particular interest. We regret that we are not able to continue since, as we show below, the
results are extremely encouraging. Because the work is incomplete and hence unpublished, we
give a detailed account here.

Our approach closely follows that of Yamaguchi et al. (1981), who used symmetry argu-
ments and classical pair potential simulations to deduce the shapes of energy vs. translation
curves for planar defects in L12 intermetallics. They could not say how particular metals would
behave but only describe generic features in the problem. We can now supply the missing link
by doing explicit quantum mechanical calculations. We illustrate the procedure in Pt3Al.

We first inquire how effective the Harris-Foulkes approximation is, as is our usual prac-
tice. We have calculated the shear constants C and C' and find good agreement with the results
of Fu and Yoo using the full potential LAPW method (Fu and Yoo, 1989). We then compare the
L12 -D0 19 and LI 2--D022 energy differences, which we show in Table 1, both self-consistent and
in the Harris-Foulkes approximation. For later reference, we show also our results for Cu3Au.

Table I

STRUCTURAL ENERGY DIFFERENCES IN PT3 AL AND CU3 AU

(mFlatom)

L12-D019 L12-D022
H-F --c "- I --C

Pt3AI 6.8 6.5 1 0.5
Cu3Au 1.9 1.71

Convinced that the Harris-Foulkes approximation is appropriate in Pt3Al, we construct
supercells containing APBs parallel to (111) planes and separated by 3, 6, and 9 layers of perfect
crystal. We then calculate the APB energy in each cell to monitor the convergence with cell size.
The results are shown in Table 2.

Even when the defects are separated by only three layers of crystal, the APB energy is
well converged. We then use the three-layer supercells to calculate the energy of the SISF,
which does not relax in plane (Yamaguchi et al., 1981) and the energy and translation state of the
APB and CSF. All these defects are parallel to (111). Finally, we use a six-layer supercell to
calculate the energy of the unrelaxed APB parallel to (001).

Our calculations in Ni3Al and Cu3Au are self-consistent using three-layer supercells. So
far, we have not fully checked the convergence with respect to supercell size in Cu3Au and
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Table 2

APB ENERGY IN PT3AL AS FUNCTION OF SUPERCELL SIZE

No. of Layers yAPS (J/m2)

3 0.57

6 0.54

9 0.53

Ni3AI. A six-layer self-consistent calculation of the unrelaxed APB in Ni3AI gives an energy of
0.28 J/m2 compared with 0.33 in the three-layer self-consistent calculation. Hence, we estimate
that the defect energies are exaggerated by about 15% in Ni3AI.

We now show the results that we have obtained so far. Each planar defect is character-
ized (Yamaguchi et al., 1981) by the fault plane (111) or (001), the fault vector p, and the trans-
lation vector T. Thus, the net displacement across the fault is p + T. Table 3 shows the charac-
ters of each fault studied; as shown, the translation state is characterized by the value of t. The
CSF, when t = -1, reverts to a perfect crystal (Yamaguchi et al., 1981). As t -- 1, the APB
becomes an SISF. In either case, t = 0 refers to the unrelaxed defect.

Table 3
CHARACTERS OF PLANAR FAULTS IN THE L12 LATTICE

Fault plane p T

SISF (111) 11112] 0
3

CSF (111) .1[1121 11112]

6 6
APB (111) 2-1- ] 6-[211]

2 6

APB (001) A- 110] 4[001]
___ ___ _ ___ ___ __ 2 1 _ _ _ _

In Table 4, we show planar fault energies, with relaxed values and translation states in
those cases calculated so far. The only (001) APB energy so far found is for Pt3Al, and this is an
unrelaxed value.

In Figure 3, we show plots of fault energy against translation state, reminding the reader
that the results for Ni3AI and Cu3Au are estimated to be exaggerated by something around 15%.
More work is needed here using larger supercelis.

We are deferring full discussion of these results until the study is completed. This is cer-
tainly the first time that such a detailed series of calculations has been attempted, and we have no
doubt that the results, when completed, will represent a significant step forward in our under-
standing of the deformation of L12 intermetallics. We advance some brief conclusions now,
however, from the most obvious points to emerge from Table 4 and Figure 3.
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18



Table 4

PLANAR FAULT ENERGIES y(J/m2) AND TRANSLATION STATES IN Li2 INTERMETALLICS

(111) (001)

SISF CSF APB APB

Y Y t I t t

Pt3 AI 0.56 0.60 -0.181 0.50 0.112 0.54 -

Ni 3AI 0.05 0.30 -0.117 0.28 0.104

Cu 3 Au 0.12 0.26 -0.034 0.16 0.028

We are deferring full discussion of these results until the study is completed. This is cer-
tainly the first time that such a detailed series of calculations has been attempted, and we have no
doubt that the results, when completed, will represent a significant step forward in our under-
standing of the deformation of L12 intermetallics. We advance some brief conclusions now,
however, from the most obvious points to emerge from Table 4 and Figure 3.

In Pt3AI, which is ordered to the melting point, the energies of the SISF and (001)
APB, in which Al atoms are not forced into nearest neighbor positions, are compa-
rable with the CSF and (111) APB in which there are AI-Al neighbors. This is
surprising and contrary to the usual assumptions (Flinn, 1960). Results (indicated
in Table 4) indicate that the SISF energy is close to zero in Ni3Al, so that these two
strongly ordering systems differ in this respect (it may be significant that Ni 3AI
shows anomalous yielding while Pt3Al does not).

The CSF in Pt3Al is practically unstable. YCSF has a minimum at t = -0.181 and a
maximum at t = -0.352, the energy barrier being 0.015 J/m2 corresponding to
0.24 kT per atom at the interface at room temperature. Thus, partial dislocations
separated by CSF are not likely to be observed in Pt3Al. In contrast, Ni3AI and
Cu3Au, which both show anomalous yielding, have very stable CSFs.

As expected from the weak ordering in Cu3Au, the APB and CSF energies on (111)
are lower than in Pt3AI, and the translation states are smaller.

As has been emphasized by Vitek (1990) but ignored in previous density functional
calculations (Fu and Yoo, 1989), allowing the defects to relax can lead to signifi-
cant changes in the calculated fault energy. In the extreme case of the CSF in
Pt3AI, relaxation causes more than 10% lowering. Now that we can predict the
translation state, it becomes important to look for it experimentally in defect fringes
and in variations in Burger's vector of dissociated dislocations.

Finally, even allowing for overestimation of 15%, the calculated APB energy in
Ni3Al is significantly higher than any of the measured values, which are themselves
rather scattered (Dimiduk, 1991). We need to investigate this discrepancy in future
work. Maybe there is an error in the local density approximation, or maybe the
theory and experiment can still be rationalized. We are not surprised, however, to
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find disagreement between our results and a previous local density calculation (Fu
and Yoo, 1989), since those authors used only very small supercells and calculated
only two energies (fSISF and WCSF + yAPB). As we see from our results, their claim
that YCSF = YAPB + YSISF is greatly in error. Indeed, the equivalence is not even true
in a pair potential description (Yamaguchi et al., 1981).

3.4 QUANTUM MECHANICAL ALLOY DESIGN AND THE TRANSITION-METAL TRIALUMINIDES

This work, undertaken in collaboration with D.G. Pettifor, will appear in the February
1992 issue of Scripta Metallurgica and a preprint is appended to this report (Appendix J). The
paper indicates the direction in which our work is progressing toward the long-term goals out-
lined in our original proposal. A major aim is to use our first-principles theory to predict alloy
compositions and stimulate experimental programs. Our reasons for choosing Al3Ru as a likely
candidate for a ductile transition-metal trialuminide are given in our paper. We have persuaded
C.T. Liu of ORNL, Tennessee, to prepare some alloys and we look forward to the results of his
investigations. So far, we understand, his results are promising. We have predicted the crystal
structure of Al3Ru to be D022 and not the reported D024 : in fact, as we point out, almost nothing
is known of the equilibrium properties of Al3Ru. We hope to work with the INPG group to pre-
dict the Al-Ru phase diagram, which is also known only tentatively.

3.5 THE JONES THEORY OF ALLOYING

Jones's early theory (1937) of the 1-phase alloy of CuZn has had a turbulent history, and
most textbooks are misleading, not to say wrong, on this subject. In collaboration with
M. Methfessel and D.G. Pettifor, we have used modem electron theory and an advanced method
of Brillouin zone integration to redo Jones's calculation using the rigid-band approximation with
and without the inclusion of d electrons. From the band structure alone, we can now understand
the origin of the face-centered cubic structure of the a-phase, and the stabilization of 3- and e-
brass, as Cu is alloyed with Zn. It turns out that Jones's approach was valid but, although his
conclusions were in perfect agreement with the facts, the agreement was entirely coincidental
and due to the approximations he made. Without explicit inclusion of d electrons-which he, of
course, neglected-one cannot predict all the phases of brass.

The writing-up of this work has taken some time, and led to a rather lengthy manuscript.
A current draft is appended herewith.
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Chin-Yu Yeh and A.-B. Chen
Physics Department, Auburn University, Auburn, Alabama 36849

D. M. Nicholson and W. H. Butler
Metals and Ceramics Division. Oak Ridge National Laboratory, Oak Ridge. Tennessee 37830

(Received 21 May 1990; revised manuscript received 8 August 1990)

The band theory of Korringa, Kohn, and Rostoker (KKR) based on the Green-function method
is extended to space-filling potentials. A numerical test using the Mathieu potential shows good
convergence for the bands up to 1.5 Ry with 1 -4 included in the angular-momentum expansion for
the wave functions. Our results strongly support the applicability of the full-potential KKR to bulk
electronic-structure problems.

I. INTRODUCTION the full-potential method discussed here. The results ob-
tained here should encourage the application of this

The Korringa, Kohn, and Rostoker (KKR) band theory to real crystals.

theory' - 2 is an elegant theory for the one-electron energy I1. THE FULL-POTENTIAL KKR EQUATION
bands in a closed-packed crystal for which the muffin-tin
(MT) construction for the potential is a reasonable ap- In this section we want to show that the Kohn-
proximation. To expand the scope of application, consid- - Rostoker integral equation can be simply extended to ob-
erable effort has been expended to extend the KKR tain the full potential KKR theory. The Schr6dinger
theory to full crystal potentials." I One concern about equation in the band calculation
such extension is related to the so-called near-field correc-
tions (NFC) (Refs. 3-5) arising from the expansion of the [ V- V2 + V(r)]k(r)=E-- k(r) (!)
KKR Green function beyond the muffin-tin region. Al- for a full crystal potential V(r) is equivalent to solving
though there are proofs7'-9 "1 showing that NFC do not the following integral equation:2

exist, questions have been raised about the applicability
of the theory.' 2 Since.space-filling potentials are non- 4k(E,r)= fGk(E;r,r')V(rl'),k(E,r'kir', (2)
spherical and the Wigner-Seitz cell boundary is not
smooth, we are further concerned about the speed of con- where the integration is over the Wigner-Seitz cell of
vergence in terms of angular-momentum (1) expansions. volume 7-, and k is a crystal wave vector. Gk(E;r,r') in
In this paper the integral equation approach of Kohn and Eq. (3) is the KKR free-electron Green's function 2

Rostoker, (KR) is used to derive the full-potential KKR I expfi(K, +k)-(r-r')]
(FP-KKR) equation explicitly. One advantage of our Gk(E;r,r,)=_- . (3)
derivation is that all the quantities involved are functions T a (K. +k) 2 E '

of r within a unit cell. Thus we can avoid the uncertainty where K, are the reciprocal-lattice vectors. Alternative-
in extending the wave function beyond the unit cell en- 2
countered in some other derivations."' We have also ly Gk(E ;r,r') can be expressed as

tested the convergence by comparing the numerical re- Gk(E;r,r')
suits with the exact solution for the Mathieu poten-

tial'3 - " in the simple-cubic crystal. Excellent results for _ I exp(iKjf-r'-Rj i)
the band structure in the energy range of interest are ob- 41 Ir-r'-Rpl4
tained with a maximum value of 1 4 included in this ex-
pansion. where i-VX' forE >0 and ,-iVT forE <0, and R,

The fact that the Mathieu potential is exactly soluble are the lattice translation vectors. To derive the FP-
gives it an advantage for testing purposes over working KKR equation, we first observe that Eq. (3) can be cast
with realistic potentials.4.9. 7 Our test complements the into a surface integral,

empty-lattice potential" - to provide a stringent test for G )

the FP-KKR theory. The strong angular-momentum Js
dependence in the Mathieu potential gives a good repre- - E9 .Er'lq'Gk(E;r,r')].dS'=O, (5)
sentation of the anisotropy that is present in the open
structures pertaining to many semiconductors and insula- where S, is the surface of the Wigner-Seitz cell.
tors. The restriction of the KKR to closed-packed met- Since the Ir'i in the surface integral exceeds the
als imposed by the muffin-tin approximation is lifted by muffin-tin radius r, we need to consider the expansion of

42 10976 © 1990 The American Physical Society
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the Green function beyond the original range of Kohn tral point of controversy, we rederive the results explicit- I
and Rostoker. Several authors have already considered ly in the Appendix for the range of r and r' needed here.
this point. For simplicity, we shall only consider the case We show that the expansion
with one atom per unit cell. Since this expansion is a cen-

Gk(E;r,r')= YL I I [i(1-'BL.L(k,E)JL(Kr)JL'(Kr')+K&LLJL(Kr)NL(Kr')I] (6)

is valid as long as both r and r' are inside r and satisfy the The basis function L (E, r) is a regular solution to the
following condition: Schr6dinger equation inside r,

Irl < Ir'l < IR1 for all IR.1:0. (7) [-V 2+ V(r)]0L(Er)=EbL(Er) , (9)

In Eq. (6) the notations JL(r)=j(Kr)YL(r) and and behaves like JL(KIr) at the origin r =ro-.0, which is 3
NL(Kr)=n,(Kr)YL(r) are used, where j, and ni, are, re- typically the location of the atomic nucleus. This basis
spectively, the spherical Bessel and Neumann functions, set can be calculated using the following integral equa-
YL is a real spherical harmonics, and L represents the tion:4

double indices (1,m). BL.L,(k,E) is the usual KKR struc- 3
ture constant. 2'. 3 We note that for any Irl smaller than 4bL(E'r)=JL(Kr)+ f"ogL'(E;rr')V(r')40L(E'rkdr' ,

r,,, the condition in Eq. (7) is satisfied for all r' contribut- L"

ing to the surface integration in Eq. (5). The condition (10)
Ir'J < IR, I in Eq. (7) holds for most lattices; exceptions where SL(E;r,r') is a free-particle Green's function and I
are those, for example, with long narrow cells. For such is defined as

cases, this condition can be satisfied by breaking the unit

cell into smaller cells including so-called "empty cells" gL(E;r,r')=K[JL(Kr)NL(Kr')-NL(Kr)JL(Kr')] . (11)
which do not contain an atomic nucleus.

The wave function inside the cell r can be expanded in We note that the basis function *bL(E,r) is coupled to
a basis set 14DL(E,r) as other angular-momentum channels for r > r0 , because the

crystal potential V(r) is not spherical.
0k(E,r)= I aL(k,E)L(E,r). (8) The expansions of G in Eq. (6) and of J, in Eq. (8) can

L be substituted in Eq. (5) to obtain

lJL(Kr)X [ I" +KC'u..(E) JL(kE)=O. r <r. (12)

where We note that our derivation is similar to Nesbet's

SL'L(E)=Kf 5 [JL'(ir'),4'V(Er')J-dS' (13) derivation." We hope, however, that the above explicit
derivation may be more accessible to some readers. It isand also useful for establishing the notation necessary for the

description of the application of FP-KKR theory to the
CLV.(E)=Kfs, [NL(Kr'), ,(Er')].dS'. (14) solution of the Mathieu potential which constitutes the

main result of this paper.

In the above, the notation [F ,F 2 ] -F V'F 2 - F2 V'Fj 11. CALCULATION OF S AND C MATRICES
has been used. The surface integrals in Eqs. (13) and (14)
are over the boundaries of r as indicated by S,. Since The surface integrals for the S and C matrices in Eqs.
JL(Kr) in Eq. (12) are linearly independent functions, the (13) and (14) can be very time consuming. It is desirable
following set of homogeneous equations holds: to seek simplification of these calculations in a real appli-

Ycation. One plausible approximation which is consistent
V L l with the KKR spirit is to expand every quantity involved

in angular-momentum components. Equations (13) and

(14) are equivalent to the volume integrations
+KCLL..(E) IL..(k,E)=O . (15) SL.L(E)=K f JL.(#r)V(r)0L(Er)dr (16) 3

This is the FP-KKR equation that we are after. and

A-2I
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CL.L(E)= -6L.L.+KfNL.(xrr)V(r)40L(Er)dr (17) &AbL(E;r)= If,'9L.(E;r~ri)AYr')FL(E;r')dr'I U 0
One can free the limits of these integrals by replacing the f,'gLE;r,r'Vr)AoLE;r'dr'
crystal potential V by the truncated potential V, + f '

V1(r)= V(ro(r) , (18) (26)

where a(r) is a step function and is defined as iteratively using angular-momentum expansions for all
1, for r within 7 quantities involved.

(r) fohr rwite.in19)
herwise. (19) IV. APPLICATION TO MATHIEU POTENTIAL

The angular-momentum expansion for the basis function To test the accuracy of the FP-KKR equation and the
is assumed to be convergence in angular expansion described above, we

0,L(E,r)= 1 6 LL(E,r)YLU(r), (20) applied the theory to the Mathieu potential' 3"-  of the

L' form
and the truncated potential VTis expanded as VXr)=-U o [ +co 2 o , (27)

V(r) VIT(r)Y (r) . (21) 1 a

L where we took the lattice constant a to be 2v times the
The integrations in Eqs. (16) and (17) can be reduced, re- Bohr radius and the potential parameter U0 to be 0.5 Ry.
spectively, to the simple radial integrations Because the potential is separable, the eigenvalue prob-

"r lem reduces to three one-dimensional problems. The
SL.L(E)=KY. f,jL wrwL'VEr)4L.LEr2 dr (22) band structures and corresponding wave functions can be

V" computed to the precision of the computer and can be re-
and garded as "exact" in the numerical comparison.

The Mathieu potential is poorly represented by the MT
CL.L(E)=--8L.+K Y -nL.(Kr)VL.L.1(r) approximation, because the simple cubic structure isIL 0'"X rather open and the potential has a large variation in the

X4.L..L (E,r)rdr , (23)

where r, is the radius of the circumscribing sphere of the 1.e.
Wigner-Seitz cell. The VLL.(r) is given by [1001

VL.'L.(r)= f YL(r)VT(r)YL "'(r)d n  .0 .- .................

I XCt L V[T(r),(4

where 1.a

CL L.f YL.(r)YL(r)YL..(r)dfl (25) 1"01t]

.0.is a Gaunt coefficient. r
Note that in the above the basis function *L(E,r) is

assumed to be calculated from Eq. (10), where V(r) is the
full crystal potential. This is the same procedure used byBrown and Ciftan (BC). The original Williams-Morgan 3  

as.
(WM) approach, however, used the truncated potential i
VT for the calculation of the basis function in Eq. (10). If OAe
expansions of the potential and 0

DL in Eq. (10) include all ra
the angular-momentum components, both approaches
probably will give the same results for the band structure,
provided both converge.'1. 2

1 In practice, the expansion is r
limited to a certain i,; therefore, these two approaches FIG. 1. Angular-momentum expansion of the Mathieu po-yield different results. tential along [100]. [110] and [111). The solid circles represent

In the actual calculation of the basis functions using ei- the contintilous crystal potential V(r), and the solid lines are the
ther Vor V 7, we first writethe potential as the sum of V0  truncated potential V "I r). The dotted and the dashed lines areand A Vt, where V0 is the spherical part of the potential the sums of the angular-momentum components up to I=$ forand A V is the rest. We then solve for the radial wave V(r) and 111r), respectively. r,, r., and r, are the distances be-
function f, corresponding to V0. Similarly, the basis is tween the origin and the face, edge, and corner of the cube, re-written as 0 L =FL + AL, where FL =fL YL, and AO0L is spectively. Notice that the dotted line and the solid circles are
solved from the integral equation not distinguishable in the figure.
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interstitial region. For example, with U o set to be 0.5 Ry, cause of sharp edges and corners in V(r), the angular- I
the MT constant potential is V,=U 0[9/r(6- n)I momentum expansion is only slowly converging. This is

=0.501 116 Ry, while the actual value of the potential evident in Fig. 1, which shows sizable errors made in all

varies from -0.5 Ry at (1,0,O)a to 1.5 Ry at (1,,)a. three directions [100], [110], and [Ill] in the expansion

When the full potential in Eq. (27) is expanded in cubic of VTup to = maz =8.I

harmonics V(r)=2L VL(r)KL(r), VL(r) is proportional We have carried out the FP-KKR calculation using
to -Uojl(21rr/a), and the series converges very fast. the wave-function expansion in Eqs. (10) and (24) up to
With an I,, = 8, one can achieve a converged V(r), as =4. The basis sets are calculated using both the BC

shown in Fig. 1. However, in the expansion for the trun- and WM approaches with the potentials expanded up to

cated potential, V(r)= (r)(r)=jL VT(r)KL(r), the lmx8. Results from the MT-KKR approximation are
components also obtained for comparison.

In Fig. 2(a), the solid lines represent the "exact" band
structures for the Mathieu potential. The dots are the

V[(r) jKL(r)V(r)a(r)dr (28) MT-KKR results. Despite the crude approximation in

the MT potential, the lowest band is still reasonable. The

have to be carried out numerically with great care. Be- MT approximation becomes worse at the higher energies,

1.05

0I

1.3 30.2 "

0. 1

0.1 I
0.2

0.1 

(

InI
-0. 0 I

-0.1I

-t).r x M

FI. . omarso o () hemufi-tn KRan ()the FP-KKR band structures (the dots) with the exact results Ithe solid

lines) for the Mathieu potential. The symmetry points r, X, M, and R correspond to the wave vector at M0,0,01 (i,0,0), (1 , ' ) , and

(1,1,.L ).tlrespectively, in units of2ir/a.
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as indicated by the large energy deviations and splittings ticeably different from those based on the BC approach

of the levels. For example, the "exact" bands from r to plotted in Fig. 2(b). However, there are slight differences
X from r to M around 0.9 Ry are degenerate due to between the results of the two approaches. For reference,
separability of the Mathieu potential, while the MT ap- we list the deviations of both the BC and WM ap-
proximation lifts this "accidental" degeneracy. proaches and the "exact" energies in Table 1. While the

The full-potential KKR results are compared with the WM approach gives a larger deviation in the lowest-
"exact" band structure in Fig. 2(b). The dots are now the energy band around R, the overall rms deviations of theseI FP-KKR results and are calculated based on the BC ap- two approaches are similarly small. These results imply
proach. The agreement is excellent and rather uniform some freedom in the choice of basis functions. Provided
up to 1.3 Ry. The calculation even preserves the acciden- that reasonable approximations are made in the represen-
tal degeneracy at r" at energy 0.88 Ry. The lowest band tation of the cell potential VT and in the calculation of
has a detectable deviation of 0.016 Ry at R, but has very SLL' and CLL' from Eqs. (21) and (22), it appears that the

small root-mean-square (rms) deviation. The deviations FP-KKR equation will give reasonable bands indepen-
at R and some other energy states are probably due to the dent of the exact algorithm for obtaining the OL, e.g.,

truncation in the angular-momentum expansions. The from V(r), VT(r), or other smooth potentials augmented

,'P-KKR bands based on the WM approach are not no- to V 7.

1.2 i

1 1.1

0.9 .. ,"

0.8

> 0.7

I _ 0.6

0.3

0.2

0.1

-0.0
-0. 1

-0.2
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- .4 r

(27T/0)

FIG. 2. (Continued).
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TABLE 1. Deviations of the FP-KKR band energies AE functions expanded up to I -- =4 and the potential up to I
from the exact values E,., for the Mathieu potential at several I, = 8, the FP-KKR theory as described above gives ex-
symmetry points. The subscripts WM and BC stand, respective- cellent results for the bands in the energy range needed
ly, for the Williams-Morgan and Brown-Ciftan approaches de- for solid-state applications. With this method, one
scribed in the text. All energies are in Ry. should be able to deal with solids having open structures,

Symmetry such as semiconductors, for which MT-KKR is not suit-

states AEwM EE,,,,, able.
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Here we want to show that Eq. (6) is valid when Eq. (7)

is satisfied. Following Kohn and Rostoker, 2 we separate

V. SUMMARY Gk of Eq. (5) into two parts,

The main purpose of this paper is to test the accuracy Gk(E;r,r')=go(k,E;r,r')+gl(k,E;r,r') , (Al)
of the FP-KKR theory in band-structure calculations. w
To help eliminate doubts about this theory, we have de- where go is the singular part,
rived the FP-KKR equation explicitly from the Kohn- I exp(igjr-r'I)
Rostoker integral equation. 2 This FP-KKR theory still g4(k7E;r'r)=- r-r'i (A2)
preserves the clear separation between the structural and
potential information possessed in the MT-KKR equa- and

tion. The potential information is contained in the S and g I (k, E; r, r')

C matrices, which can be easily calculated if the basis I exp(iKr-r'-R, k)
functions and potentials are expressed in angular- = - T"--- exp(ikR,) . A3)

momentum expansions. Such expansions are desirable in 3,_ Ir-r'-R, I I
a realistic calculation. The whole procedure has been
tested against he exactly soluble Mathieu potential in the For <r' <R, and for r and r' inside ), the first part has
simple-cubic structure. Because of the openness of the the expansion L = --xl1 ,J1 . ar)H(wr'), where

structure and the high anisotropy of the potential, this HL(Kr)=JL(Kr)+iNL(Kr). Under the same condition for

potential provides a challenging model to test against any r and r', Ir < Ir'+ R, I also holds for a Wigner-Seitz cell,

band-structure theory. Our results show that with wave so that the following expansion is valid: 6
.8

exp(i xlr- r'- R , 1) = i LO r H ~ r ,

Ir-r'-R,I L L

= -ig , I JL(lr)lI LL.(KRsLtlr') (A4)
L L

where R)
if;.AR --4r itr 1+

12 -
1 L ' . H" (,,R,), (A5)

L2where C1L, is given in Eq. (25). Therefore the Green function has the expansion in Eq. (6) with the structure constant

given 
by• w.(kg. I- K I, 6Lp,,kR. S'] L^
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Defect equilibrium in HgTe
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333 Ravenswood Ave., Menlo Park, California 94025

ABSTRACT

Defects are a well known source of problems in low x Hgl-xCdxTe and Hgl-xZnxTe.

To gain insight into the relative importance of various native point defects in these ma-
terials we have calculated the formation energy of native point defects in HgTe using
a full potential linearized muffin-tin orbital method. Breathing-mode relaxations were
included. Formation entropies resulting from the change to the phonon spectrum upon
formation of a defect were calculated using a valence force field model for the elastic con-
tributions and a rigid ion model for the Coulomb contributions to the dynamical matrix.

The energies and entropies were incorporated into mass-action equations to deduce the
relative defect concentration. In agreement with experiments, we find mercury vacancies

are the dominant defect to accommodate excess tellurium in the lattice when the material
is equilibrated in the presence of mercury vapor; we predict that tellurium antisites are
dominant in material equilibrated with tellurium solid. Of the defects that accommodate
excess mercury, we find that mercury antisites may be more prevalent than previously

thought. Extensions to the alloy are also discussed.

PACS numbers: 68.35.Md, 68.55.Bd
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I. INTRODUCTION 3
Defects are a well known source of problems in HgCdTe and a number of questions I

concerning them remain unanswered. For one, although post-growth anneals of as-grown
p-type vacancy-doped material are routine, the observed conversion to n-type has never 5
been fully satisfactorily explained, although a residual donor is believed to be the culprit.

Also, a number of studies on the diffusion of the constituents in HgCdTe and HgZnTe have /

been done but the source of the observed double-diffusion profiles is still not understood.

These and other problems could be better addressed if there were a more complete analysis

of the point defects in this material. Moreover, a comparative analysis of the defects
in HgCdTe and HgZnTe would facilitate an assessment of the relative merits of these
materials. I

With the goal of a better understanding of the point defects in HgCdTe and HgZnTe,
we examine the properties of the cation and anion vacancies, antisites and interstitial 5
atoms in HgTe. In a previous paper [1] we presented results using the linearized muffin-tin
orbital (LMTO) approach within the atomic spheres approximation (ASA) to calculate 1

the defect formation energies. In this paper, we eliminate the ASA and use a more

accurate full-potential (FP-LMTO) approach and include a breathing-mode relaxation

about the defect site. Additionally, we calculate the defect formation entropy resulting
from the change to the phonon spectrum using a Green's function method with a valence
force field and rigid ion model. We conclude this paper by incorporating our energies and
entropies into a mass-action model for the defect concentrations. I
II. DEFECT FORMATION ENERGIES

The full-potential linearized muffin-tin orbital method (FP-LMTO) is used to calcu-
late the defect formation energies [2]. These calculations omit the atomic spheres approx- -
imation employed in our previous work [1], in which the charge density inside a sphere
about each atomic site is assumed spherically symmetric. The FP-LMTO calculations 5
also permit us to calculate the lattice relaxation about the defect site. Defect formation
energies are calculated from a difference in total energies of the compound with and with- -
out the defect, where the free atom state is used as the reference state, unless otherwise
specified. Supercells are used in which a periodic array of defects is constructed. Because

we wish to calculate the formation energies in the dilute limit, we use the largest supercell 1
as is computationally feasible. Details of this work, including energy convergence with

cluster size, will be presented elsewhere [3]. 1
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Two forms of atomic relaxation are used in these calculations. The first is a radial

breathing-mode relaxation of the neighbors nearest to the defect site. Second, an overall

relaxation of the lattice constant is included to eliminate the pressure on the supercell.

This second relaxation will approach zero as the supercell size increases and the diliute

limit is approached. We are currently looking at non-breathing-mode relaxations, such as

the trigonal and tetragonal distortions which split the degeneracy of the triply degenerate

T2 states [3]. Because the symmetry of the distortion depends on the ionization state of

the defect, distortions and charge states must be treated simultaneously.

The localized states associated with defects are among the most important and in-

teresting of defect properties, but these properties are difficult to calculate using modem

first-principles theories. The local density approximation (LDA), on which the LMTO

is based, is inadequate to predict the semiconductor band gaps; higher-order corrections

to the many-body equations must be included to correct the band-gap problem. Conse-

quently, in the present calculations we have not attempted to identify the location of the

localized states in the gap.

The present calculations are performed using the Harris-Foulkes approximation, in

which atomic charge densities are superposed and the resulting charge density and poten-

tials are used to solve the LDA equations. This approximation has been found to be in

good agreement with self-consistent results for bulk semiconductor and metal properties

[2]. Self-consistent calculations were also done to test the validity of the Harris-Foulkes

prescription for defect total energies. Agreement within less then 0.2 eV was found for all

defects studied.

We calculate the defect formation energies for the following reactions:

EVHg + HgTe - VHgTe + Hgg (1)

EVT. + HgTe .- HgVTe + Teg (2)

I EHgTe + Hgg + HgTe - HgHgTe + Teg (3)

I and

ETe + Teg + HgTe TesgTe + Hgg. (4)

The reference states are chosen so that the number of unit cells on both sides of the

reactions are equal and excess atoms are accommodated in their free atomic state. Other

reference states of interest can be obtained by considering the additional defect reactions:

I B-3



1

EHgTe + HgTe - Teg + Hgg, (5)

arE + (Te2)g - Teg (6)

and

Dr, + Tee4 - Teg. (7) !

In Eqs.(1)-(7) AB corresponds to an A atom or defect on a B site, where V is a vacancy, 1
g the free atom state, and s the elemental solid. Our results for the energy of Eqs.

(1)-(5) are given in Table I. The predicted cohesive energy of 4.1 eV is larger than the

experimental value of 3.3 eV and is due to underlying errors in the LDA formalism. We are

currently considering a number of approaches that would allow us to correct the numbers

in Table I for this LDA error. Calculations were done for 8, 16, and 32 atom supercells;
for all defects, convergence is found within less than 0.5 eV. We are currently examining

larger supercell sizes to better understand the convergence to the dilute limit, which we
wish to imitate; results will be presented elsewhere (3].

Nearest-neighbor radial relaxations are also given in Table I. The near-neighbor relax- I
ations are found to be nearly independent of supercell size. Both the Hg and Te antisites

are too big to fit into the lattice and result in an outward relaxation of their nearest neigh- 3
bors. In contrast, the Hg and Te vacancies result in an inward relaxation of the nearest

neighbors. These results are in contrast to results for the silicon vacancy [4] where an

outward relaxation was found.

III. DEFECT FORMATION ENTROPIES I

Defect formation entropies are calculated from the change to the phonon spectrum I
resulting from the introauction of the defect. A valence force-field model within the

rigid hybrid approximation is used to calculate the elastic contributions to the dynamical

matrix in the harmonic approximation, and experimental elastic constants are used. For

II-VI semiconductors, we also include a Coulomb contribution to the dynamical matrix 3
which results from the ionic nature of the bonding. Unlike the elastic contributions to

the dynamical matrix, the Coulomb contributions are long-range in nature and induce a

macroscopic electromagnetic field, which results in a screening of the transverse optical

phonons. The ionic charge is chosen to yield agreement with experiment for the zone

center splitting of the transverse and longitudinal optical phonons. The phonon dispersion
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i curves calculated from the dynamical matrix are in fair agreement with the experimental

dispersion curves. The discrepancies with the experimental curves are largely due to the3 absence of long-range elastic interactions in the near-neighbor valence force-field model

employed.3 A Brillouin zone integration is done to calculate the phonon density-of-states for the

ideal crystal without a defect. From the density-of-states matrix, p, the Green's function

3can be calculated from
2max ~w2 _ W2. -1

,O0(w2) = r pmax p(2) - (W2) d,,2 + p(w2)ln nun - (8)

where the singularity in the integral has been explicitly removed. The change in the totalI density-of-states when a defect is introduced into the crystal can be deduced from Dyson's

equation to obtain

App 2 ) = lIm--90(ln(det(1 - 0 0(w2 )V))) (9)

where V is the perturbation potential. In the present case, we use a strictly site-diagonal

perturbation potential for the mass change due to the introduction of an isolated defect.3 resulting entropy change is given by

IS = 2k f'M Ap(w2) (l-coth (-h-)- ln(2sinh(2 )))wdw (10)

where k is Boltzmann's constant and 'h is Planck's constant divided by 2r. Calculated

entropy changes for the various defect reactions in Eqs. (1)-(5) are given in Table I. Fur-

ther details of the calculations, including defects with both on and off-diagonal disorder,

are given elsewhere [5].

[I IV. DEFECT EQUILIBRIUM

In the following analysis we consider only native point defects in bulk HgTe. Although

surfaces will play an important role in determining the properties of HgCdTe, in particular

for 'he epitaxial films, we will not discuss those effects here. Furthermore, we consider only

the neutral defects in the analysis, although the ionized states are certainly important

for many defects, and will affect the defect concentrations. Finally, full equilibrium is

assumed, i.e., the material is assumed to have been annealed for a sufficiently long time.

For the analysis of the defects, we will find it convenient to reference all of the defects

to pure HgTe and Hg in the vapor state. The above reaction become:
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E'VHg +HgTe +VHgTe+Hgg (11)

E'VT. + Hgg - HgVTe (12)

E'HgT, + 2Hgg - HgHgTe (13)

E'TeH,+ 2HgTe - TegTe + 2Hgg (14) 1
In addition to these reactions, we also include those corresponding to the interstitial
mercury and tellurium. These are: I

E'H& + Hgg - HgI  (15)

and IB
E'Te + HgTe - Tel + Hgg (16) 1

The subscript I refers to the interstitial site. Entropies and energies for these two defect
reactions are given in Table I. We have not calculated the change to the phonon spectrum

from adding an interstitial atom to the solid; we approximate it by equating the entropy

of an interstitial atom to that of an atom on its ideal lattice site. The energies for the I
reactions in Eqs. (15) and (16 ) have been taken from our previous ASA calculations [6].
Because of the large lattice distortions induced by the interstitial atoms, these calculations
are more difficult to perform than for the other defects. Results for interstitial mercury

and tellurium using the FP-LMTO will be presented elsewhere [3]. Other defects such j
as the Schottky and Frenkel type can be obtained by taking sums and differences of the
above reactions, Eqs. (11)-(16).

The reaction constants corresponding to the above reactions are:

KV~ =(kT)1(2wmHg)fh-3exp( S V )exp( - E l VHE) =[VHgPHg (17)1

KvT = (2m )~AhT k [VTP (18)

KHgT. = (kT)-5(21rmHg)-3hexp SHr SH.)exp (-E=r [HgTeJP- (19) I
B-6 3



Uk)(imH)h x (STeH+ SHgTe) ex (~4!z I'TeH51p2 (20)
KTeH = kkT)5 2TmH1

3hlex

g H 1  (kT)-1(2WmH)Ih3exp( SL exp(..4I )H [HgjJP-1 (21)

and

KTl = (kT)1(21rmBg);h-exp( !L)exp(-i )= [TeI]PH5 . (22)

Here T is the temperature in Kelvin, PHg is the mercury pressure in atmospheres, h is

Planck's constant, and mHg is the mass of mercury. The square brackets indicate the

defect site fraction.

We will first consider the defects that accommodate excess tellurium: VHg, TeHg, and

Te. Evaluating the above mass-action relations for the solid in equilibrium at T=250°C

and PHg1 atm, we find

_10 (23)

' and
Hg = 10- 24 . (24)

We can see from these equations that the mercury vacancy is the dominant native point

defect to accommodate excess tellurium ar' that the tellurium antisite and interstitial

tellurium densities are negligible in comparison for the given anneal conditions. Even

at higher temperatures, near 5000C, the vacancy is the dominant defect and exceeds the

tellurium antisite concentrations by - 105
Next we consider the equilibrium of the material with elemental solid tellurium. This

will be of interest if the material contains tellurium precipitates and the region near the
precipitate is in equilibrium with this solid tellurium phase. Rewriting the mass-action

equations to reference all defects to the tellurium solid, we find at T=250°C and Plg=l

atm that

3 j B 104  (25)

and

[Tel) 10- 28. (26)
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The result in Eq. (25) indicates that the concentration of tellurium antisites will exceed i
that of mercury vacancies in the vicinity of the tellurium precipitate. This may have

interesting consequences for the properties of partially annealed material when tellurium 5
precipitates are present. Perhaps a more relevant situation to consider is material which

has been equilibrated at higher temperatures, which is then subsequently annealed to g
remove the Hg vacancies. For equilibration at 5000C we find

[TeH 1000. 
2T)

Even at this elevated temperature the tellurium antisite density is expected to exceed the I
mercury vacancy density near tellurium inclusions. We would expect that the tellurium

antisites to be less mobile than mercury vacancies and thus be more difficult to anneal.

Therefore, if the material is slow to anneal at the lower annealing temperatures because

of low mobility of the tellurium antisite, an atmosphere of a significant antisite density £
will be present about the tellurium inclusions. The size of these atmospheres will depend

on the dynamics of the growth process, since this is a nonequilibrium situation. If such

atmospheres of tellurium antisites are present, we can expect that they will result in some I
interesting properties. For example, if the tellurium antisites are donors, regions of n-

type material may be present in the otherwise p-type, vacancy-doped material at high I
temperatures. If the tellurium antisites are acceptors, regions of excessive p-type carrier

concentration will exist in the p-type, vacancy doped, material. If the tellurium antisites n

were slow to anneal at low temperatures, subjecting the material to a low temperature

anneal could leave regions of relatively high n- or p- type character. i
Next, we consider the defects that accommodate excess mercury in the lattice. Using

the Hg vapor as the reference state, for material equilibrated at T=250"C and PH-1

atm we find

[Hgq ]~ o(28)
[VTe]

and 3
[Hg~ 108. (29)[VTJ-

We thus conclude that the the mercury antisite is the dominant defect that accommodates

excess mercury in the lattice. Consequently we find that

[Hg -8 lg. (30)I
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Diffusion measurements in HgCdTe indicate that interstitial mercury is the dominant

diffusing species at high mercury pressures[7]. Even though we predict them to be a

majority species, the mercury antisites may not contribute to diffusion because they are

expected to be far less mobile than interstitial mercury and their diffusion will involve
tellurium vacancies or interstitial tellurium, both of which are energetically costly to

create. Additionally, although the mercury antisites are predicted to be the dominant

equilibrium species, this equilibrium may not be realized because the equilibration time

for antisites may be substantially longer than for interstitial atoms.

The above results are for the compound HgTe. The question remains as to the exten-

sion of these results to the alloys HgZnTe and HgCdTe for the mercury-rich regimes. In

a previous paper [81, using a tight-binding model we showed that the vacancy formation

energies are sensitive to the alloy environment, in particular for vacancies of the common

constituent, i.e., tellurium vacancies in HgCdTe and HgZnTe. Even for vacancies of the

substituted species, for which the alloy environment lies in the second neighbor shell and

beyond, we found the vacancy formation energies to vary in going from one environment

to another, by several tenths of an electron volt. We previously found that the Hg va-
cancy formation energy is smaller in HglxCdxTe than Hgl-xZnxTe for their respective

x corresponding to a band gap of 0.1 eV, and indicating lower vacancy concentrations
in HgZnTe. For comparisons of the relative defect densities done above, one needs the

variation of the antisite and interstitial atom energies, which are also expected to depend

on the alloy environment.

Several improvements to the present calculation are under way and will be presented

elsewhere [3]. First, we still must confirm the convergence of our calculations by going to

even larger supercells. We anticipate that the shifts to the energies will be comparable
for all the defects, and therefore conclusions based on ratio of defect densities will be

unchanged. Second, as discussed above, a correction for the LDA error would help in im-

proving the present results and allow us to more reliably bench-mark our energies against

experimental numbers. Third, we have included only the breathing-mode distortion for

the defects. Inclusion of Jahn-Teller distortions can lower the formation energy, but since

they are charge-state dependent, we have not done so in the present work. For the neutral

defects, we do not expect that this will alter the present conclusions. A combination of

the Jahn-Teller distortion and the LDA error is a likely explanation of our discrepancy

with the experimental values for the mercury vacancy of 2.24 eV [9]. Finally, the defect
equilibrium must be done for the appropriate charge state of the system, while the present

analysis was done for the neutral defects only.
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Table I. Defect formation energies for the defect reactions indicated in text.
Energies shown in parentheses are from ASA calculations, published by Berding et al. [6]; an
average of the anion and cation tetrahedral interstital sites has been used here. Defect entropy
changes include the phonon contribution only. Radial relaxations are the change in the distance
between the center of the defect site and ts near neighbors.

Formation Energy Near-Neighbor S
(eV) Radial Relaxation (10- eV/K)

E E (A) 250 C Soo C

VHg 2.6 2.6 -0.14 -66.3 -76.4

VT. 5.8 1.7 -0.17 -60.4 -70.4

Hg'r 3.4 -0.7 0.06 5.5 5.5

TeIH -0.1 4.0 0.20 -5.8 -5.8

HgTe 4.1 ... ... -135.5 -155.4

Hgl ... (0.88) ... -72 -82

Tel ... (4.96) ... -72 ---82
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A tight-binding model is used to calculate the formation energies, bond lengths, and bulk moduli
of a number of ordered Ill-V and I-VI semiconductor alloys. The parameters in the model are ad-
justed so that the bond lengths, cohesive energies, bulk moduli, and shear elastic constants for the
constituent compounds are described correctly. The model is then applied to alloys without further
adjustment. Based on the calculated excess energies, we conclude that none of the ordered alloys
found experimentally is in its stable bulk equilibrium state at the growth temperatures. Although
the alloy excess energies can be negative, if the reference constituent compounds are constrained to
match the substrate lattice used in epitazial growth, their magnitudes are not large enough to ac-
count for the observed ordering. A possible explanation of the observed states in terms of a barrier
that prevents the metastable ordered alloy from decomposing into separate phases is presented.
However, this expimnation only applies to alloys with lattice-mismatched constituents. Detailed re-
suits on the bond lengths and bulk moduli are also discussed.

1. INTRODUCTION range from 400"C to 800C, and the ordering directions
are not necessarily the same as the growth direction.

The bulk semiconductor alloys A1 I ,BC were long Finding LRO is surprising, because it is at variance

thought to be ideal pseudobinary compounds, in which with the well-established conventional picture for the

the C atoms sit in a fcc sublattice while the substituting bulk semiconductor alloys having simple phase diagrams

atoms A and B randomly occupy the sites of the other fcc with miscibility gaps21 -24 driven by strain energy. The
sublattice. However, several recent findings in the last question is, are these ordered alloys thermodynamic equi-
few years revealed quite a different picture. First, extend- librium states? This question can be answered if accurate

ed x-ray-absorption fine-structure (EXAFS) experi- values for the alloy excess energies can be determined.

merts "2 clearly showed a bimodal distribution for the To be specific, we shall only consider three important

nearest-neighbor bond lengths in these alloys, which im- structures, CP, CA, and CH, for the ABC2 alloys, and

plies that the equilibrium atomic positions are not the define an excess energy &E as
virtual-crystal sites of the zinc-blende crystal. Recent ex- E =E( ABC2 )-[E( AC)+E(BC)J, (I)
periments ' ' and theories' also indicated that the ar-
rangement of the alloying atoms in these systems is not where E ( ABC 2) is the energy per molecule, or per four
completely random. Most surprising of all, however, has atoms, in the aloy ABC2, and E(AC) and E(BC) are
been the dicovery of lon -range ordering (LRO) in these the energies per pair of atoms in the AC and BC zinc-
alloys grown epitaxially. i

- 9 Essentially, all the III-V al- blende compounds, respectively. If these ordered alloys
loys grown by molecular-beam epitaxy (MBE) or metal are in their thermodynamically stable states at the
organic chemical vapor deposition (MOCVD) under growth temperature, AE has to be negative and must
some special growth conditions are found to be ordered. have a magnitude considerably larger than 200 meV on
While a great majority of these ordered alloys form the the present scale.25 This would be in contradiction with
ABC2 compounds in one or more of the following three the positive values of AE previously reported for the bulk
crystal structures: the CuPt (CP), CuAu I (CA), and semiconductor alloys. 21- 24' 26  However, the ordered
chalcopyrite (Cl), a few alloys are ordered in the form of semiconductor alloys found from the epitauial growth
A 3BC4 with the famatinite or luzonite structure. These may be in a constrained equilibrium state, where the con-
crystal structures have been well described by Wei straint is imposed by the substrate strain. We need to
er a/. 2o Table I is a partial list of the LRO alloys that know the energetics of the various states involved besides
have been grown, together with the growth conditions the bulk access energy before we can start understanding
and ordered structure found. For later emphasis, we note the ordering and stability of these alloys. The calculation
that the substrate temperatures for the ordering to occur of some of these energies along with an accuracy analysis

43 9138 @1991 The American fhysical Society

C-i



I
43 FORMATION ENERGIES, BOND LENGTHS, AND BULK ... 9139

TABLE 1. A list of the ordered III-V semiconductor alloys identified experimentally. I
Growth

Alloys Structure method Substrate Temperature ('C) Reference

AIGaAs2  CA MOCVD and MBE GaAs(100) and GaAs(110) 600-800 Ref. 7 U
AIInP 2  CP MOCVD GaAs(001) 650-700 Ref. 13

AInAs, CP MOCVD InP(001) 600 Ref. 9

GalnP 2  CP MOCVD GaAs(001) 650 Ref. 14
CP MOCVD OsAs(001) 640 Ref. 15
CP MOCVD GaAs(001) 650-700 Ref. 13
CP MOCVD GaAs(001) 600-630 Ref. 16
CP MOCVD GaAs(001) 600-700 Ref. 17 I

GalnAs2  famatinite LPE InP(Q 10) 630 Ref. 8
luzonite MBE InP(001) 400 Ref. 10
CA MBE InP(l 0) 500 Ref. I I
CP VLE InP(001) 650-660 Ref. 12 3

Ga2AsSb CA MOCVD InP(100) 550-680 Ref. 18
CH MOCVD InP(100) 600 Ref. 18
CP MBE 540 Ref. 19 3

is the main purpose of this paper. justment. Our method thus corresponds to an interpola-
The excess energies for a number of ordered semicon- tion scheme for the alloys between the constituent conr-ductor alloys have been calculated from local-density- pounds. Such an approach is particularly appropriate for

functional (LDF) theory using various band-structure the present study, because the alloys and the constituent
methods. 6,0.22 Although the LDF error for the crystals have very similar structures and local bonding.
cohesive energy of a III-V compound is typically several The rest of this paper is arranged as follows: Section IItenths of one eV per pair of atoms, it is generally believed describes the ETB model, the way the parameters are
that the excess energy based on the same technique is ac- determined, and the results for the structural properties
curate to several meV, because the errors in LDF cancel of the constituent crystals. Section III briefly describes I
in Eq. (1). However, the ordered alloys that we are con- the structural parameters and the energy-minimizationsidering are open structures containing several atoms per procedure for the three alloy structures in both their bulk
unit cell. The atomic positions in these alloys are usually equilibrium states and in states constrained to match sub-
distorted away from the regular zinc-blende sites. Only strates. The calculated excess energies are summarized in I
the most sophisticated band-structure theories which are Sec. IV and are compared with those from LDF andcapable of treating shear distortion, such as the full- VFF. To provide more detailed structural information,
potential linear combination of muffin-tin orbitals (FP- the calculated bond lengths and bulk moduli of the alloys
LMTO),33 full potential augmented plane waves (FP- are also presented. The final section, Sec. V, contains a
APW), 4 and the fully converged plane-wave pseudopo- summary and discussion.
tential method, 3" can be expected to yield precise results
within LDF. Even with present-day computers, it is still
too expensive to use these methods to perform calcula- I. TIGHT-BINDING MODEL I
tions over a wide range of semiconductor alloys. On the
other hand, although the valence-force-field (VFF) mod- The tight-binding (TB) model that we are going to use
el' 3 7 is simple and is effective in treating the strain ener- is very similar to that used by Chadi 3' and Harrison. 3,"o
gy, it cannot account for the chemical energy.26 These The total energy of a semiconductor crystal is assumed to I
considerations have motivated us to use the empirical be the sum of the electron energies E,(k) in the valence
tight-binding (ETB) method. The ETB not only can treat bands and the pair repulsive energies ui, between the
both the strain and chemical energies but also allows for nearest-neighbor atoms:
precise and systematic computations. To eliminate the 1
propagation of errors from constituent compounds to al- ET =Eas + Ur= - E e (k)+ X Uj . (2)
loys, the parameters in ETB are adjusted to produce the U k i>j
experimental values for the cohesive energy, bond length Furthermore, the band energies are calculated using a
d, bulk modulus B, and the shear elastic constant minimum-basis TB Hamiltonian which includes oneC, I - C2 for each constituent crystal. These parameters and three p orbitals per atom. The interaction parame-

are then used in the alloy calculation without further ad- ters needed from the Hamiltonian are the term values F,
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and e of each atom and the nearest-neighbor two-center and

interactions V.,, Vp,, V,, and V.,r For a given crys- u(d)=uo(do/d) , (9)
tal structure, the Hamiltonian H(k) associated with a
given wave vector k within the first Brillouin zone has a where the superscript and subscript 0 indicate the values

dimension of 4m, where m is the number of atoms per evaluated at the equilibrium bond length do. The values

unit cell. The diagonal part of H(k) consists of the term - a' are taken to be Harrison's universal forms scaled

values, and the off-diagonal elements are computed as by a factor f,

ed h(d ) , 3-o') =fvHarrison (10)
Hyy,(k) =  eik d aa 0a(

d Note that Harrison's' ° universal two-center interactions

where the sum runs over the first-neighbor bond displace- take the form
ments d . that point from the orbitals denoted y to y'. V wnmon =%. /md 2

The V stands for the s, p,, py, or p, orbital of a particular aa' 0a'/

atom in a given unit cell. The matrix elements hy. are re- where m is the free-electron mass, 1 is Planck's constant,
lated to the two-center interactions by the Slater-Koster and the il's take the following values: i?, =-1.32,
relations, 4  

,J,, = 1.42, il,/,= 2.22, and t,,,,= -0.63.
Thus there are four adjustable parameters for each sys-

tem: the scaling parameter f, the powers n and m, and

h, =aI Ve, (5) the value uo. These parameters are determined by re-
quiring that the model produce the correct experimental

h, 2 aV,,+(l-a ) Ve1,, (6) values for the bond energy Ebw, do, B, and the shear
elastic constant C 11-C 2. Since C,,-C,2 is governed
only by VZO° in the present model, it alone determines the

where a= x i Id are the direction cosines of d, while all scaling factor f. Then the bond energy Eb,, is used to

the rs depend only on the length d. determine uo . The requirement that the first derivative

The first task is to determine the forms for the interac- of ET be zero at do then determines the ratio of the

tions V., and the repulsive energy u from the constitu- powers n/m, which couples with the equation for the

ent compounds. Since the strain energy plays a very im- bulk modulus to yield the values for n and m. One can

portant role in the alloy formation energy, we shall make then use these sets of parameters to calculate other quan-

sure that our model produces the correct elastic con- tities that are not employed in the fitting, e.g., another

stants. To keep the model close to Harrison's 39'40 origi- shear elastic constant C44, the Kleinman internal-

nal form, but to free it from his rigid lid2 and lid 4 scal- displacement parameter 42 
', and the optical-phonon fre-

ing rules for Vaa. and u; respectively, we assume the fol- quencies w, at the zone center, to check the validity of the

lowing forms: model.
In the actual calculations we used the term values tab-V...,(d)-= Vaa,.(do/ld)R (8) ulated by Chen and Sher. 43 Table ll lists the experimen-

TABLE II. Values of bond length d, bond energy Ebo, bulk modulus B, and shear coefficient
C = CI - Ct1 used to determine the parameters in Table Ill. Also listed are the experimental values of
C," and the TO-phonon mode (o at r to be compared with the calculations. All the elastic constants
are in units of 10" dyn/cm', d in A, Ed in eV, and &'ro is given in terms of wave numbers in cm - '.

The sources of these values are discussed in Ref. 47. Also listed are the force constants a and P (N/m)
for the valence-force-field model in Eq. (13).

d Eb. B C C," W a

AlP 2.367 -2.13 8.600 6.900 6.150 440 43.867 9.429
AlAs 2.451 -1.89 7.727 7.160 5.420 361 40.360 10.132
AlSb 2.656 -1.76 5.817 4.428 4.076 366 33.417 6.790

GaP 2.360 -1.78 9.143 7.870 7.143 367 46.257 10.723
GaAs 2.448 -1.63 7.690 6.630 6.040 269 40.351 9.371
GaSb 2.640 -1.48 5.792 4.946 4.440 231 32.800 7.539

InP 2.541 -1.74 7.247 4.460 4.600 304 40.346 6.543
InAs 2.622 -1.55 5.794 3.803 3.959 219 33.165 5.757
InSb 2.805 -1.40 4.831 3.130 3.132 185 29.605 5.069

ZnTe 2.637 -1.20 5.090 3.060 3.120 177 29.445 4.659
CdTe 2.806 -1.10 4.210 1.680 2.040 141 26.374 2.722
HgTe 2.798 -0.81 4.759 1.817 2.259 116 29.773 2.935
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tal values" - 4 7 for the do, Eb..d, B, and the C11 -C 2  which is consistently larger than the n=2 used in !
used to fit the parameters, and the values of C4, and Harrison's universal TB parameters. For the repulsive
transverse phonon frequency a used for the consistency pair energy u =uo(do/d)'", the power m ranges from 5.4
check. to 7.1. The ratio m/n falls in the range from 1.5 to 1.9,

The elastic constants can be calculated directly from which is smaller than the m/n= 2 used by Harrison. 39

perturbation theory. First the Hamiltonian H(k) is ex- The calculated values of C" for most systems agree with

panded in powers of the infinitesimal strain parameters e experiment to 10% or better. The calculated TO-phonon
up to second order: modes at r for most III-V systems also agree with experi-

ments to 10% or better. The discrepancies for the Il-VI
H 0 +H +{H 2

2 ,'11 systems are larger (about 15%). Reliable results for

where H o is the strain-free Hamiltonian and H, and H 2  from both experiments and first-principles calculations
are, respectively, the first and second derivatives with are only available for a limited number of semiconduc-
respect to e evaluated at e=O. The band-energy contri- tors. The calculated , C4,, and w from the TB model
bution to the strain coefficient then comes from the agrees very well with those results, as shown in Table IV.
second derivative of EBs with respect to e, denoted by The results in Tables III and IV are based on a particu-

lar set of term values and TB parameters. It is useful to2Eas examine how the predictions are influenced by these pa-
ae2  ~ (tklH 2 1vk) rameters and the fitting procedure. Table V shows a re-v. k sult based on Chadi's procedure3 8 '41 in which the TB ma-

I(v,klH1I c,k)12  (12) trix elements V... are scaled as lid 2, and the repulsive I
+ 2 (k)-e(k ) (2) pair energy is taken to be

where E,(k) and Ic, k) are, respectively, the eigenenergies u =u 0 +ul(d -do)+u 2 (d -do )2

and eigenvectors of H o for the conduction bands. Simi-
larly, v,k indexes the valence bands. Note that the inter- The parameter u0 is set to produce the correct bond ener-
valence-band contributions in the second-order perturba- gy, uI is determined by requiring the correct equilibrium
tion sum cancel exactly and so they are not needed in Eq. bond length, and U2 is fixed by the bulk modulus. Two
( 2). The matrix elements of H1 and H 2 needed here can sets of TB parameters are tabulated for each system: One I
be expressed from Eqs. (3)-(7) in terms of the first and the of them is the set used by Chadi3a and the other (labeled
second strain derivatives of the two-center interactions present work) is the set obtained by multiplying
V... and the direction cosines a, Harrison's V., by the scaling factor f listed in Table III.

Table III shows the results for f, n, m, and u0 obtained For convenient comparison, the zero of the term values is I
for the constituent compounds, and the corresponding set equal to the anion s energy. Despite considerable
values of C4, , and (o calculated as a consistency check. differences in these two sets of TB parameters, the results
The scaling factor f ranges from 1.1 to 1.5 and tends to of the predictions from the two sets are very similar and
decrease with an increase in polarity. In the power-law also very similar to those predicted from the other pro- I
dependence Va.. c (do/d)", n ranges from 3.3 to 4.2, cedure given in Table IV. The only noticeable difference

TABLE !II. The results for the parameters f, n, m, and u0 obtained from the fitting of the bond en- I
ergy, bond length, bulk modulus, and shear coefficient C11 -C1 2 of Table I! using the full band-
structure calculation. Also listed are the calculated C4 , internal-displacement parameter , and the
TO-phonon mode w at r. All the elastic constants are in units of 10' dyn/cm2, uo is in eV, and Cw are
given in terms of wave numbers in cm-.

f n m Uo C," (

AlP 1.294 3.530 5.593 6.435 5.827 0.516 447AlAs 1.464 3.524 5.430 7.089 5.598 0.459 384 I
AISb 1.337 3.268 5.668 4.838 3.944 0.564 354

GaP 1.395 3.705 5.683 7.285 6.857 0.501 382GaAs 1.397 3.633 5.716 6.530 5.791 0.500 292
GaSb 1.431 3.471 5.717 5.519 4.515 0.536 256

InP 1.323 4.240 6.633 5.603 4.260 0.584 304
InAs 1.300 3.997 6.427 4.962 3.564 0.552 220
inSb 1.353 3.773 6.399 4.350 3.092 0.602 200

ZnTe 1.284 3.306 5.828 4.285 2.813 0.590 205
CdTe 1.171 3.656 6.761 3.092 1.701 0.694 156
HgTe 1.173 3.760 7.074 3.080 2.040 0.716 152

I
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between the predictions in Table IV and Table V is that the internal distortion parameter for the C atoms. There
in the latter the phonon frequencies are slightly larger are only two different nearest-neighbor bond lengths in
and C44 are slightly smaller. These comparisons show the alloy:
that the model with parameters given in Table II not only
contains the correct structure properties inserted through dAc ( a4)[2 +( +b)2]In
the fitting procedure, but also predicts other mechanical and
properties with reasonable accuracy. This model should
serve as a good basis for alloy calculations. dac-(a/4)[2+(,6-6)2]1

/2

III. ALLOY CALCULATION For a set of values for a, P, and 6, the total energy is cal-
culated following the general description in Sec. II. The

A. CAu I st e (CA) interactions Va,. and the repulsive energy are scaled by
the bond lengths according to Eqs. (8) and (9), respective-

The ABC 2 semiconductor alloy in the CA structure ly. The Hamiltonian H(k is now a 16 X 16 matrix. The
forms a layer structure ACBCACBC along the total energy is then minimized by varying the three pa-
(001) direction. The basic lattice vectors can be chosen rameterS a, 9, and b. If the alloy is constrained to match
as a1=(4,T,O)a, a2=( , -{,O)a, and a3 -(0,0,O)a, a (001) substrate, the lattice constant a is fixed by the sub-

where 0 is the c/a ratio with a and c being the lattice pa- strate, and the total energy is minimized with respect to 19

rameters. Note that the ideal P value for a zinc-blende and 6.

structure is I. There are four atoms per unit cell: one Aatom at (0,0,0, one B atom at (T,0,P/2)a, and two C B. Cldeopyrite treture (CH)

atoms at (1,1,#+b)a/4 and (3,1,30-6)a/4, where 6 is The ABC 2  semiconductor alloy in the CH
structure forms a superlayer structure
ACACBCBCACACBCBC ... along the (012) direc-
tion. The basic lattice vectors can be chosen

TABLE IV. Comparison between calculated and experimen- as a I=( 1,1, -2 )a/2, a2=( - l, 1,2 )a/2, and
tal lattice constant a, elastic constants B, C11,-C12 and C,. a3 (l , - 1,2,6)a/2, where 6 again is the c/a ratio, with
Kleinman (Ref 42) internal-displacement parameter C, and the an ideal value of 1. There are now eight atoms per unit
TO-phonon frequency wi in wave numbers cm- '. Also listed are cell: two A atoms at (0,0,0) and (0,1,l)a/2, two B atoms
C.O which correspond to the value without the internal distor- at ( 0,0,0 and ( 0,1.)a12, ad o C atoms

44at (!0Oa/W2 and (1,1,0)a2, and four C atoms at
tion. The FP-LMTO and PP-PW are the ab initio theories, and (I +b,l,#)a/4, (l,3+6,3#)a/4, (3,1 -6,3)a/4, and
TB is our tight-binding method discussed in the text. All elastic (3-,3,P)a/4, where 6 is the internal distortion parame-
constants are in units of 10.1' dyn/cm'. Experimental values are t for whe s theinteraledisoon prmthose listed in Table !I. ter for the C atoms. Again there are also only two

different nearest-neighbor bond lengths in the alloy:
Expt. FP-LMTO8 PP-PWb TB

Si a 5.431 5.41 5.45 5.431 dAc=(a/4)[l+(l+6)
2 +0 2]1/ 2

B 9.923 9.9 9.3 9.923 and
C,, -Cru 10.274 10.2 9.8 10.274
C" 8.036 8.3 3.5 8.013 drC=(a/4)[l+(l-) 2+P2]'.
C11 11.1 11.30
C 0.54 0.51 0.53 0.51 A similar procedure can now be carried out to minimize
ai 523 518 521 572 the total energy with respect to the three parameters a, 0,

and 6. However, the Hamiltonian H(k) is now 32X32.
Ge a 5.65 5.59 5.65 For the case in which the lattice is matched to the (001)

B 7.653 7.2 7.653 substrate, we again are left with two parameters 0 and 6
C,, -C 2  8.189 8.5 8.189 to vary for the energy minimization.

C44 6.816 6.3 6.84
C40 7.7 9.46 C. CaPt ructare (CP)

0.44 0.49
0 303 302 342 In the CP structure, the alloy forms a ( I I ) superlat-

tice ACBCACBC .. . Because of a lack of reflection
GaAs a 5.642 5.55 5.642 symmetry about any of these planes, the B layer need not

B 7.69 7.3 7.69 be located exactly at the middle position between the two
C,,- C2 6.63 7.0 6.63 successive A layers. Also the distance between two

C, 6.04 6.2 5.791 closest atoms from two different A layers may not need
C10 7.5 7.83 to correlate with that between two A atoms on the same

C 0.48 0.50 plane. Thus there are a total of five independent parame-
i 273 268 292 ters required to describe the crystal structure: the lateral

'Reference 33. lattice constant a for the layers, the spacing D between
'Reference 49. two successive A layers, and the three spacing parame-

9Reference 50. ters for the three layers (one B and two C) inside D.
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TABLE V. Comparison between the two different sets of TB parameters described in the text; the resultant coefficients uo, u , and m
u2 of u, and the predicted elastic constants, Kleinman internal-displacement parameters , and phonon frequency W.

A ,.C . V.. Vyo vfo v,. -

Si Chadi 0.0 7.20 0.0 7.20 -2.03 2.55 4.55 - 1.09
Present 0.0 6.88 0.0 6.88 - 2.41 2.59 4.05 - i.1i5

work

Uo U IU C C Co I
Si Chadi 7.29 -9.98 23.90 10.66 7.89 11.38 0.49 620

Present 6.93 -9.70 23.42 10.27 7.83 11.39 0.51 592
work I

, 4 E ,4 E ,',+ + E, , , 1 7 - vIZ C v , ,,A V v ,

GaAs Chadi 0.0 9.64 5.12 11.56 -1.70 2.40 1.90 3.44 -0.89
Present 0.0 10.09 6.79 14,12 -2.34 2.52 2.52 3.94 -1.12 I
work

Uo UI U' C C, Co, (LI

GaAs Chadi 5.12 -7.12 18.22 6.36 5.60 8.77 0.54 339
Present 6.53 -8.39 19.90 6.63 5.70 8.53 0.54 322
work

There are, however, only four atoms per unit cell, each summation i runs over all the bonds, and in the second
coming from a different layer, so the H(k) matrix is term, the bond-angle contribution, the summations in-
16X 16. There are also four different bond lengths in the clude all the pairs of bonds that share common atoms.
crystal, two for the A C and two for the BC bonds. If the The do in Eq. (13) is the equilibrium bond length, and
alloy lattice is matched to a (11l) substrate, the lateral A(d,.d s ) is the strain-induced change of the dot product 3
lattice parameter is fixed, but we still have four parame- between the two bond vectors which point from the com-
ters to vary for energy minimization. However, if the al- mon atom to the nearest-neighbor atoms. For a zinc-
loy is matched to a (001) substrate, we shall assume that blende crystal, there is only one value for the bond-
all the alloying atoms A and B are locked into the fcc lat- stretching force constants a, =a, and one value for the I
tice points of the substrate, and we are left with only two bond-angle-restoring-force constant ij =1. Their values
free parameters which describe the relaxation of the two are determined26 by fitting the experimental bulk moduli
nonequivalent C layers. B and shear elastic constants CI -C1 2 , and are tabulated

It is useful to comment on the Brillouin-zone (BZ) in- in Table II. We extend Eq. (13) to calculate the strain en-
tegration needed for the calculation of the electronic en- ergy in an ABC 2 alloy by treating each bond and each
ergy. Since our calculation involves relatively small and pair of the same bonds in the same way as in the constitu-
easily handled matrices, we are able to sample over a ent compounds. However, when dealing with the bond-
large number of k points. We found that a uniform grid angle term involving two unlike AC and BC bonds, both
of 1000 k points inside the BZ always guarantees a con- do and B0i are taken to be the average values. The results
vergence of the total energy pair of atom to within 10 - 3  from VFF will be compared with the ETB calculations in
meV and the elastic constants to an accuracy in the third Sec. IV. I
digit. We found that total energies calculated using two

special k points5 1 are about 10 meV per atom pair higher IV. DISCUSSION OF ALLOY RESULTS
than the converged value. However, when extending the
two-special-k-point method to the CA and CH struc- A. Excess energies I
tures,5 2 most of the errors of the alloy and pure com-
pound cancel, and we found that the final errors in the Before presenting the results for different kinds of ex-
excess energies are only about 0.5 meV per atom pair. cess energies, the readers should be reminded of the rela-

Before presenting the results, we briefly describe the tion between these energies and ordering. The Appendix a
Keating36 valence-force-field (VFF) model. The VFF provides a qualitative discussion of this relation. It also

only deals with the strain energy. The energy per unit describes how different kinds of excess energies presented
volume in a strained diamond or zinc-blende crystal is below may alter the picture of ordering.

given by The bulk excess energies AE calculated from ETB for I
12 [the ABC 2 alloys in the three structures of CA, CH, and

U , aA(d, -d,) 1, [A, )]2 , CP are listed in Table VI along with the results from
8 - VFF and LDF. First we observe that ETB and VFF give

(13) very similar results. Both models produce very small AE I
values for those alloys composed of compounds with

where in the first term, the bond-stretching energy, the nearly equal lattice constants. However, AE for AIGaP2

C
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3 and HgCdTe2 derived from ETB are slightly negative, substrates used in the growth are selected to have their
The differences between the ETB and VFF results in lattice constants close to the equilibrium lattice ,arame-
these systems are a measure of the small size of the ters (see Tables I and IX) of the ordered alloys mentioned
chemical-energy contribution to AE in the ETB model, above, it takes little strain energy for these alloys to
For the lattice-mismatched alloys, all the AE values from match the substrates. On the other hand, if an alloy on
ETB are positive and are slightly larger than those ob- the substrate is to decompose into two substrate lattice-

tained from VFF except for InAIP 2. The major reason mismatched constituent compounds, it takes energy to
VFF yields a smaller AE is that the VFF used here con- constrain the separated systems. Only the case of thin
sistently predicts smaller values of the elastic constant layers in which no dislocations form will be treated.
C4 than the experimental values, thereby underestimat- Then the reference constituent energies E(AB) and
ing the strain contribution to AE. However, the small E(AC) in Eq. (1) which must be used to calculate the ex-
chemical energy included in ETB may upset this trend, cess energy for epitaxial growth, referred to as AEp, are
exemplified by InAIP 2. the ones with their lattice parameters matched to the sub-

The quantitative comparison between ETB and LDF is strate. This coherent strain can make AE,, negative for

mixed. Starting from the lattice-matched alloys an alloy even when its bulk excess energy AE is positive.
GaAIAs 2, the AE from LDF calculated by different Of course, the actual values of excess energies are sub-

groups range from 7.5 to 35 meV for the three structures strate specific. However, an overall assessment can be
considered, as compared to nearly zero calculated from made when the substrate is also an alloy by choosing the
ETB. Similar differences between LDF and ETB also substrate lattice constant to be the average value
occur in another lattice-matched system, HgCdTe2.
Since the strain energy is nearly zero in these systems, the a, =&=(aAc +ao )/2
10-meV or so difference between the present calculation
and the majority of the LDA results represents the The major difference between AE, and AE then comes
discrepancy in the estimate of the chemical energy in AE from the strain energies of the constituent compounds
between the two theories. These differences certainly are forced to lattice match the substrate. Since the energies
well within the margins of errors of both ETB and LDF. of the ordered alloys at their equilibrium lattice constants
However, we note the LDA AE values for GaAIAs 2 in a only differ by a small amount (0 or 2 meV) from those
the CA structure are rather consistent except the 35 meV at a, we shall use the alloy energies already calculated in
from Ref. 56. For the lattice-mismatched alloys, ETB Table VI to deduce the epitaxial excess energy.
agrees very well (within 20 meV) with LDF for the 111-V The strain energy of either constituent compound
alloys in the CP structure and ll-VI alloys in the CH matched to a, =a on the (001) substrate can be estimated
structure. The agreement is also reasonable for all alloys from the following simple formula:
in the CA structure. However, the differences between
the two calculations are more substantial for the 1ll-V al- E,( AC)=(CI +2C 12 -4C1 2 ICII )6'a/4, (14)

loys in the CH structure and II-VI alloys in the CP where 6 0 =(ao c )/ is the percentage lattice-
structure. We note that although the trend A C

AEcH < AEcA < AEcp among the three structures holds parameter difference between the two constituent com-

for both ETB and LDF for these lattice-mismatched al- pounds. The strain energies used to calculate the values

loys, the AECH values from LDF for the lll-V systems of AEP in Table VII, however, are obtained from ETB,

are considerably lower than those from ETB, particularly which in fact only produces a small correction (U to 2
the negative values calculated for InAIP 2 and InAlAs 2.
Despite all these quantitative differences, the qualitative
from LDF by Wei and co-workers6' 27 as shown in Fig. 1. " "'".cum

The most important conclusion that can be drawn from jo-...
Table VI is that these ordered bulk alloys are not the
thermal equilibrium states at the experimental growth O
temperatures shown in Table 1. For this to happen, the cio u I
AE value has to be less than -200 meV per four atoms, 25 DO1
as mentioned earlier. This AE value is far below all the ......
calculated values and is beyond the uncertainties of our t _-

ETB model and the LDF calculations listed above.
While the above excess energies do not support a .4 ...... '

thermally stable ordered bulk alloy at the growth temper- ..ature (-600"C), they may offer different conclusions ..... .. ..--.... ...
when applied to the epitaxially grown alloys. The idea 0 1

was first suggested by Flynn 57 in connection with epitaxi- AMPg OP, %AM Oht% HIT% c,T%

al growth of ordered metal alloys. If the substrate ma-
terial serves as a reservoir for the epitaxial film, then the FIG. 1. The excess energies of Eq. (6) for the ordered alloys
alloys grown on the substrate have to be in thermal and in three crystal structures calculated from the present TB model
mechanical equilibrium with the substrate. Since most (solid circles) and from LDF in Ref. 6 (open circles).

I
C-7I



43 FORMATION ENERGIES, BOND LENGTHS, AND BULK ... 9145

meV at most) to Eq. (14). The relative values of AE,, ETB model. Despite these discrepancies, a simple con- I
among the three structures on the same substrate, say, clusion can also be drawn from Table VII. These num-
(001), should remain the same as those of AE, because bers still cannot account for the ordering observed exper-
these two energies only differ in the reference energy. imentally, because all the calculated AEp are still well
For example, the relation above the -200-meV value required for the ordering at .the growth temperatures. 25

AEP(CH) < AE (CA) < AE,p(CP) In the above consideration, the constituent compounds

still holds for alloys composed of lattice-mismatched con- are constrained to match the lateral lattice of the sub-

stituent compounds. On the (001) substrate, the A strate and are allowed to relax fully in the growth direc-
stitentcomouns. E'P tion. For a (001) substrate with a lattice constant a,

values ar- essentially all positive in the CP, negative in
the CH, &nd switch between positive and negative values the c/a ratio for either compound is estimated to be

in the CA structure. The CP alloys matched to the (11) I
substrate have very small AEep with magnitudes smaller c/a = 1 +6 0(C12 IC 1 + 0.5), (15)
than 10 meV. The LDF epitaxial energies calculated by

Wei, Ferreira, and Zunger6 have the same qualitative where 6o again is the percentage bond-length difference
trends as those from ETB among the three structures. between the two constituent compounds. This c/a relax- I
The quantitative differences in &E,. between the two cal- ation results in elongation for one compound and shrink-

culations are larger and also more scattered than those in age for the other along the growth direction. If the lat-
AE. This is peculiar, because the difference between AE tice constants of two constituent crystals have a substan-
and ep in both calculations comes from the strain ener- tial difference, these opposite relaxations will produce
gies of the constituent compounds, which can be reliably strained grain boundaries between the C and BC crys-
estimated from Eq. (14) and are well prescribed by our tals. The reference state energy E(AC)+E(BC) used in

TABLE VI. The bulk excess energies AE (in meV per four atoms) from ETB and comparison with the results from local-density-

functional (LDF) theory and the valence-force-field (VFF) model.

CuAu I Chalcopyrite CuPt

Alloys ETB LDF VFF ETB LDF VFF ETB LDF VFF

AIGaP 2  -2.4 1.5 -2.8 1.0 -2.6 0.2
AIGaAs, 0.6 10.8' 0.3 0.6 11.4 b  

0.2 0.8 7.51 0.4
1.5c 9.8I
15.1

b

13. 5d

35'

AIInP2  69.0 43.0' 74.0 44.0 -21.0 47.3 114.2 97.0' 111.1
AllnAs2  68.8 35.0' 66.6 45.8 -15.0 43.7 107.0 97.6

Ga 2PAs 30.0 26.6' 23.1 19.4 6.5' 15.0 33.6 37.2' 32.7

Ga 2PSb 260.2 207.0 67.4 135.8 290.8 292.6
Ga 2AsSb 113.0 129.2' 91.8 69.8 52.0' 59.9 128.0 132.0' 130.1

114.8
h  --

115.0I

GalnP 2  88.4 115.6' 83.8 57.2 19.0 54.3 139.4 155.4' 124.9
91.0
54.4k

GaInAsz 73.2 60.1I 67.3 48.2 16.5' 43.8 113.0 108.5' 99.5
83.6'
6 6 .7 1

GaInSb 2  57.4 51.5 37.4 33.2 85.58 76.2

ZnCdTe2 34.3 54.2' 33.7 22.4 19.2' 21.1 65.3 103.5' 56.0
ZnHgTe2  29.7 42.5' 32.1 21.0 11.4' 19.9 54.9 103.3' 53.5
CdHgTe 2  -2.3 12.1' 0.61 -2.7 11.3' 0.4 -2.7 9.8' 1.1

'Reference 28. 'Reference 6.
bReference 31. hReference 30.
'Reference 27. 'Reference 32.
dReference 55. 'Reference 29. I
'Reference 56. kReference 54.
'Reference 53. 'Reference 74.
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TABLE VII. The excess energy AE, (in meV per four atoms) for epitaxial alloys calculated from the present TB model and com-
~parison with the LDF results.

Structure CuAu I Chalcopyrite CuPt
substrate (100) (100) (111) (100) (100)
(Alloy) TB LDF TB LDF TB TB LDF

AIGaP 2  -2.9 -3.1 0.5 -3.0
A1GaAs 2  0.8 0.7 0.4 0.2

AllnP 2  -11.5 - 36.0 -36.3 -0.2 33.8 -18.01

AllnAs, -4.6 -27.8 -7.4 33.6

Ga2PAs 5.3 4. P -5.3 -21 0.2 8.9 0.5"
GazPSb 40.5 -52.2 7.8 71.1
Ga2AsSb 15.5 35.0 -27.6 - 2 8 b -5.6 30.5 52.0b

17.0,1 -45.8' i11.51

48.0'

GalnP2  -3.3 - 3.00 -34.5 -106 -9.4 47.6 3.4'

12.8'

GalnAs2  0.4 -9.7" -25.4 -9.6 39.5 4.18
I10.5d

6.7'
8.4

d

29.6'

GalnSb2  1.4 -18.5 -5.0 29.9

ZnCdTe2  -5.6 -5.4" -17.5 - 57.2' 6.6 25.5 0.2'

ZnHgTe 2  -5.9 - 13.5' -14.7 -64.28 3.0 19.3 0.9'

_ CdHgTe2  -2.4 -2.8 -3.0 -2.9

'Reference 6.
bReference 27.
'Reference 28.
dReference 29.

the calculation of AE,, in Table VII assumed that the B. Bond lengths

decomposed A C and BC phases are macroscopic crystals. In addition to the excess energies, our calculations also

The domain-wall energy contributions were neglected be- produce detailed information about the equilibrium

cause there are few boundaries. However, a realistic path structures of the alloys. Table IX lists the c/a ratio and

between the completely separated and fully relaxed AC
and BC domains is likely to pass through a sequence of
intermediate states, including the stage of forming micro- tABLE Vo I The excss energy (c in rea perio ur

scopic AC and BC clusters which serve as nucleation

centers. As an approximation to this phase space im- CuAu I Chalcopyrite CuPt

mediately adjacent to the ordered ABC2 alloy, we have -AIGaP2 - 3.1 - 3.4 -3.3

estimated the metastable nucleation energy barrier by as- AIGaAs, 0.7 0.6 0.23m suming that the microscopic AC and BC clusters are lat-

tice matched to the ABC 2 alloy and their energetics can AllnP2  - 192.5 -217.4 - 147.3

be estimated from the bulk crystals under the same con- AllnAs2  -149.0 -172.2 -1 10.8

straint. Because the c/a ratios for the ordered alloy are

nearly unity (see Table VIII), this epitaxial energy against Ga2PAs -37.5 -48.1 -33.9
nucleation of AC and BC clusters is equivalent to using a GaPSb -354.4 -447.1 -323.8
reference energy E(AC)+E(BC) which disallows the Ga2 AsSb -162.2 -205.2 -147.1

c/a relaxation. Consequently, this epitaxial excess ener-

gy for the alloy, referred to as AEH (the hard model), is GalnP, -200.4 -231.6 -149.5

lowered further as shown in Table VIII. Note that the GalnAs2  -149.8 -174.8 -109.9

values for a number of alloys have already attained mag- GaInSb2  -113.9 -133.8 -85.3

nitudes that could account for the stability of the ob-

served LRO of lattice-mismatched alloys. However, de- ZnCdTe 2  -131.6 -143.5 -100.5

tails of the mechanism that causes the LRO to preferen- ZnHgTe 2  -150.3 -159.1 -125.1

tially form in the first place must still be determined. CdHgTe2 -2.8 -3.2 -3.2
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the first-neighbor bond lengths for all the alloys studied. constituent crystals are in the order dAc > dxc. The

These results are particularly useful if experiments such bond lengths in the CA and CH structures are in general

as EXAFS are carried out to measure the local structures bimodal, with dAc > dec. This result is similar to that

of these LRO alloys. As mentioned earlier, the c/a ratios found in the disordered bulk alloys. There are four
are nearly unity for all alloys. The notations used in the different bond lengths in the CP structure: dc, d'
table are such that the equilibrium bond lengths of the dac, and dsc, where superscripts T and S mean the triple

TABLE IX. The equilibrium bond lengths dAc and dac and the equilibrium average lattice con-
stants a (all in A). In CP structure, the first values dAc and dRc are for those bonds along the (111)direction, and the second values are for those in the other three directions.

ABC, c/a a d 4c dc I5
AIGaAs, CA 1.000 5.658 2.450 2.449

CH I.0030 5.656 2.450 2.449

CP 0.998 5.660 2.451 2.449 2.444 2.451

AIGaP2  CA 1.000 5.457 2.365 2.362
CH 1.000 5.459 2.366 2.361
CP 0.998 5.461 2.37 1 2.362 2.354 2.366

InGaSb 2  CA 1.009 6.272 2.781 2.669 3
CH 0.995 6.298 2.788 2.660
CP 1.001 6.295 2.788 2.762 2.650 2.699

InAIAs2  CA 1.013 5.831 2.597 2.479 1
CH 0.992 5.870 2.604 2.469
CP 1.001 5.861 2.599 2.578 2.456 2.512

InGaAs2  CA 1.012 5.834 2.597 2.478 I
CH 0.993 5.866 2.605 2.468
CP 1.002 5.859 2.602 2.577 2.457 2.510

InAIP2  CA 1.007 5.658 2.520 2.395
CH 0.996 5.674 2.527 2.384

CP 1.001 5.677 2.516 2.504 2.381 2.425

InGaP2  CA 1.013 5.640 2.518 2.390
CH 0.993 5.672 2.526 2.379
CP 1.003 5.665 2.520 2.499 2.368 2.425

AsPGa 2  CA 1.001 5.549 2.430 2.379 3
CH 0.999 5.552 2.437 2.37 I
CP 0.998 5.556 2.450 2.422 2.354 2.390

SbAsGa2  CA 1.003 5.880 2.601 2.499 I
CH 0.998 5.884 2.613 2.482
CP 0.995 5.905 2.637 2.585 2.439 2.53 i

SbPGa 2  CA 1.008 5.776 2.586 2.435 1
CH 0.994 5.787 2.603 2.407
CP 0.993 5.822 2.635 2.567 2.344 2.486

CdHgTe 2  CA 1.000 6.471 2.805 2.799 I
CH 1.000 6.471 2.806 2.798
CP 0.999 6.473 2.817 2.798 2.788 2.805

HgZnTe2  CA 1.010 6.256 2.783 2.656 1
CH 0.995 6.286 2.787 2.650
CP 1.003 6.277 2.771 2.770 2.659 2.679

CdZnTe2  CA 1.016 6.252 2.790 2.657
CH 0.991 6.302 2.795 2.650 I
CP 1.007 6.275 2.787 2.771 2.647 2.685

I
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TABLE X. The ratios yn=(d.,,, - )/(d,-d) for the ordered alloys calculated from the present TB
model and comparison with experimental results for the disordered alloys.

CA CH Disordered alloys
ETB ETB Experiments

ARC. YAC Yac .4Vc VYAC Tac

lnGaSb 0.71 0.64 0.80 0.76 0.89' 0.88'
lnGaAs2  0.71 0.66 0.80 0.78 0.77' 0.80'
InGaP 2  0.74 0.67 0.83 0.79 0.80' 0.76'
AsPGa 2  0.59 0.57 0.75 0.75 0.76" 0.75'

HgZnTe2  0.81 0.76 0.86 0.84 0 .7 2b 0.73"

'Reference 58.
bReference 2.

and single bonds, respectively. However, the alloy lattice This result, when correlated with the lower excess energy,
constants a are quite close to the mean value a of the con- may suggest that the disordered alloys tend to favor a lo-
stituent compounds. A more sensitive measure of the bi- cal configuration of the CH structure. However, the cal-
modal distribution, following Boyce and Mikkelsen, I is to culated y values for GaInSb2 and HgZnTe2 do not corre-
look at the ratio Y Ac=(dAc-J)/(doc-J) with dbeing late well with the experimental results. As a matter of
the average bond length, and similarly, yrc. Table X fact, the trend as a function of the P/a ratio in the exper-
compares these ratios for the CA and CH structures with imental results is reversed. It would be interesting to see
the experimental values for the disordered bulk alloys, if these two ordered alloys do have different bond lengths
Note that a value of y = 1 corresponds to the totally re- from the disordered states. While the values of y in this
laxed case where there is no bond stretching, whereas table range from 0.6 to 0.9 for the lattice-mismatched al-
y=0 corresponds to a rigid virtual crystal where all the" loys, this trend does not hold for the lattice-matched al-
atoms are on the zinc-blende crystal sites. In terms of the loys. For example, Table IX shows that for Hg-Te and
valence-force model, this ratio is roughly y-- a /a + 2,6), Cd-Te bond lengths in HgCdTe2, both CH and CA
where a and 6 [see Eq. (13)] are the average values for the structures nearly retain their respective constituent crys-
bond-stretching and angular-restoring-force constants of tal values (i.e., y = 1), which was also seen in a recent ex-
the two constituent compunds. The calculated y ratios in periment on the bulk alloy. 59 Finally, the bond lengths
Table X follow this trend (see the a and 1 values in Table for the CP structure are characteristically different from
II). However, the values of y show that CH structures those in CA and CH structures. The single bonds along

are more relaxed than the CA structures. This result is the ordering direction [111] tend to be close to the con-
consistent with the lower AE values in CH than in CA stituent values while the triple bonds in the other direc-
shown in Table VI. The ETB values of y for GaInAs2, tions have less relaxations (with y values around 0.5 or
GalnP 2, and Ga2AsP in the CH structure are very close less).

to the experimental values2
,'
a for the disordered alloys.

I TABLE X. Bulk moduli (in 101" dyn/cm2) of ordered alloys in three crystal structures calculated from the present TB model and

the percentage deviations AB =(B -B, )/B, from the average values B,, of the constituent compounds.

ABc1, CA A cp
iBcH BcA Bcy B8, %) (%) (%)

AIGaP 2  8.858 8.858 8.854 8.8715 -0.130 -0.15 -0.201
AIGaAs2  7.695 7.693 7.689 7.7085 -0.181 -0.20 -0.257

I AllnP2  7.876 7.860 7.774 7.9235 -0.605 -0.08 - 1.882
AlInAs2 6.705 6.691 6.661 6.7605 -0.828 -1.03 - 1.475

Ga2PAs 8.328 8.291 8.294 8.4165 - 1.046 -1 .50 -1 .457
Ga2PSb 6.584 6.297 6.188 7.4675 -11.836 -15.68 - 17.135
Ga2AsSb 6.314 6.198 6.157 6.7410 -6.342 -8.05 -8.662

GalnP2  8.007 8.035 8.878 8.1950 - 1.437 -1.95 -3.865
GalnAS2  6.610 6.579 6.508 6.7420 - 1.961 -2.42 -3.474
GalnSb2  5.226 5.202 5.156 5.3115 -1.607 -2.07 -2.923

ZnCdTe2  4.6105 4.6035 4.3375 4.6500 -0.85 - 1.00 -6.72
ZnHgTe2  4.8898 4.8872 4.6323 4.9245 -0.71 -0.76 -5.93
CdH&Te2  4.4697 4.4721 4.4706 4.4845 -0.33 -0.28 -0.31
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C. Bulk moduli deserves a more detailed investigation.

Even if AEH turns out to be a possible mechanism,
Table XI lists the results for the bulk moduli calculated based on the considerations presented in this paper we

from ETB. Also listed are the percentage deviations are still left without an explanation for the ordering in
from the mean ABlA. Note that all AB values are nega- the lattice-matched alloys such as GaAIAs 2. We do not
tive. The magnitudes of AB are small except for believe that any refined bulk calculation will produce an
Ga2AsSb and Ga2PSb which have large differences in excess energy with large enough magnitude to account
both B and d between the constituent compounds. Al- for the observed ordering in GaAIAs 2. On the other
though the magnitudes of AB get larger for systems with hand, epitaxial growth is very surface sensitive. Because
larger differences in the bond lengths, the dependence of changes in the bonding character at surfaces, e.g., dan-
does not seem to be a simple function of the bond-length gling bond, charge transfer, and reconstruction, the sur-
difference. The uniformly negative AB values were also face structural energies behave quite differently from
obtained from LDF by Ferreira et al. 6 for the Ga 2AsSb those in the bulk, and do not extrapolate from the bulk,
alloys. One reason for the negative values of AB, in a energies. 72 New mechanisms for spontaneous ordering
very qualitative argument, is due to the fact that the bulk may emerge from surface energetic considerations. Some
moduli of semiconductors scales inversely as high powers hopeful thoughts7 3 along this line have already been sug-
of the lattice constant, 61 and at the same time, the alloy gested.
lattice constant is approximated well by the mean
value-the Vegard law. This qualitative behavior also ACKNOWLEDGMENTS
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standing the mechanism of ordering for the semiconduc- APPENDIX: EXCESS ENERGY AND ORDERING

tor alloys grown by MBE and MOCVD. We have ap-
plied an empirical tight-binding (ETB) model to sys- The excess energies AE, AE,,, and AE considered in
tematically interpolate the alloy total energies from those the text for the ordered alloys have to be considered
of the constituent compounds. Since the strain energy along with the free energies of other possible phases in-
makes a dominant contribution to the excess energy AE, cluding the disordered alloy in order to determine if the
particular attention has been given the elastic properties, ordered phase is stable at a given temperature. A
in addition to the lattice constants and cohesive energies. schematic mixing free-energy curve AF for a disordered

Our calculated bulk excess energies AE are positive for pseudobinary alloy AI .,B, C as a function of alloy com-
all alloys composed of lattice-mismatched compounds, position x at several different temperatures is shown in
and nearly zero for the lattice-matched systems. Based Fig. 2. Figure 2(a) is for the case AE> 0, and Fig. 2(b) for
on these results, we conclude that all the ordered semi- AE < 0. (These curves are similar to Fig. I in Ref. 57.) If
conductor alloys found experimentally are not in their AE>0, then the stable phase is either the segregated
thermodynamic stable states at the experimental growth phase or a uniform disordered solution depending on
temperatures. The same conclusion can also be drawn whether the temperature T is lower or greater than the
from the most recent LDF calculations6 20.27- 32,5 3- 5 6 list-

ed in Table VI. We note that several earlier theories63- 66  (E) 0 (b) AE (0
that concluded a stable ordering for these alloys have all __

been revised 5 "'- (see also comments in Ref. 71).
Our calculation also generates detailed information

about the structures and bulk moduli of these alloys. 0..................

These results should be checked experimentally. T-0
To further explore the stability of these alloys, we ex-

amined the energetics for spontaneous ordering when the T- ,
grown materials are constrained to match a substrate lat- * .

tice. Two kinds of epitaxial energies are calculated: One, -
denoted AE.,, corresponds to the situation in which the 0 ---- 3
constituent compounds are allowed to relax fully along T)T T ) - -

the rowth direction; and the other, the hard-model

&E;, does not allow c/a relaxation. Although the sign 0 0.5 1 0 0.5 1
of AE,, can be negative, the magnitudes are too small to AC x 9C AC xI
account for the observed spontaneous ordering. Howev-

er, the sign and magnitudes of AEH for a number of FIG. 2. Schematic plots of the mixing free epergy of a disor-
lattice-mismatched alloys are found to be comparable to dered alloy as function of alloy composition x (dotted lines) for
the energies needed for ordering at the growth tempera- (a) AE>0 and (b) AE<0. The dashed line represented AE for I
tures. Whether or not this is a plausible mechanism an ordered alloy ABC 2.

C
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critical temperature T,. for phase segregation or forming Finally, consider the implication of different excess en-

miscibility gaps. However, if AE <0, then the ordered ergies to ordering. Let us take Ga2AsSb in the chalcopy-
phase is stable at a temperature T lower than the critical rite structure as an example, for which the three excess
temperature T, for the order-disorder transition. energies are 70, -28, and -205 meV for AE, AE,, and

A crude estimate of the magnitude of AE in Fig. 2(b) AEH, respectively (see Tables VI, VII, and VIII) from the
required for ordering at a given temperature T can be TB calculation. The positive value of AE corresponds to
made by assuming that the disordered phase is a random the case of Fig. 2(a), which shows that the ordered bulk
alloy. Then in the present units of energy (for an ABC 2  phase is not stable at any temperature. Although the
molecule), the magnitude of the ordering energy defined negative value AE,, =-28 meV corresponds to the case
as AE 0 =IAE-AED1 must be greater than 2kTln2, in Fig. 2(b), the corresponding critical temperature T, is
where AED is the mixing energy for the disordered phase very low. This implies a simple constraint that the lateral
for the case at x = - and T= 0, also shown in Fig. 2(b). lattice constants of the grown material matched to the
At a typical epitaxial growth temperature of 600"C (see substrate lattice are not enough to produce a metastable

Table I), the minimum ordering energy is estimated tc be ordered alloy at the experimental growth temperature of
AE 0 = 100 meV. Taking AED = AE/2, one finds a critical 600"C. However, the significant negative value of
value of AE = -200 meV. However, if a strict pair- AEM ' = -205 meV, resulting from a further constraint in
potential nearest-neighbor model is used, AE D = AE for which the c axis relaxation is not allowed, may raise the

both the CuAu I and chalcopyrite structures and the re- Tc in Fig. 2(b) into the range of the growth temperature5 quired AE value becomes -400 meV in this estimate. and make the metastable ordered phase a possibility.
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I. INTRODUCTION

I1. GOALS

. The goals of this paper are to review the current state of knowledge of the elastic con-

stants of elemental, compound, and pseudobinary alloy semiconductors. To accomplish this

I objective, we will review:

I * Experimental methods currently used to measure elastic constants,

3 • Experimental results

• Binding and elastic constant theory

Related mechanical properties

Heavy emphasis is placed on companisons between theory and experiment, and the accu-

I racy of approximations currently in vogue. The theories discussed range from first-principles

methods, requiring heavy computations, to paaeterized physical models. The intent is torn identify a logical path between these extremes, and thereby provide insight into the connection

between atom potentials and semiconductor mechanical properties. In the course of this presen-

I tation, there are a number of instances where the need for improvements in the theory, or for

I additional experimental results, is encountered. We have tried to highlight these situations and

suggest possible remedies.I
2. DEFINITION AND CALCULATION OF ELASTIC CONSTANTS

The theory of elasticity of solids has been well formulated in many treatises (Love, 1944;

Landau and Lifshitz, 1959), so we need not review the different formalisms and conventions.

D
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I
However, as we do wish to present a coherent account of the essence of the theory, it is necessary

to define terms and describe general calculations to be used later.

In linear elasticity theory, deformation is assumed to be infinitesimal. The relative dis-

placement vector ix between two points in a deformed solid is related to the corresponding vector I
x in the undeformed solid by the following equation, in component form, through a 9-component 3
strain tensor e:

= + EPup (1)

The change in the internal energy associated with E is also small and will be denoted UV, 3
where V is the equilibrium volume of a solid. Under the condition that the entropy and the elec-

trostatic displacement field are constant, U is only a function of e, and is quadratic in E: I
U = 12-TxpRV cap aev .. (2)3

where CaB~v are the elastic stiffness coefficients, which are characteristic properties of the 3
solid. From this definition, Cgrai = Cajig-i is required for U to be an analytical function of E.

Moreover Caflru = Cwv = C p p is also required to ensure that U is zero under any infinitesi- 3
real rigid rotation. In light of these properties, the energy can be expressed in terms of a sym-

metrical strain tensor 1 as I
U=j Z7apgtV ii~ ( TLV '1 (3)3

where Tlap is defined as 3
a p +(4) I

The strain tensor T1 is a thermodynamic parameter wi'h stress tensor ; as its conjugate variable

(Bragger, 1964). The components of a are given by 3

I
U
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Gap = u 4 I (5)
I

It is clear that a is also a symmetrical tensor.I The most frequently used notation is the engineering convention, in which the strain ten-

sor e is related to e of Eq. (4) by ema = aa for the diagonal components, but eap = 2 miop for a

B. Furthermore, since e has at most six independent components, it is treated as a 6-component
Ivector, wihtevector components 1to 6corresponding respectively to tetensor componentsvcowith the vetrcmonnsIt 6 crepnigesctvltothetesrcmons

xx, yy, zz, yz, xz, and xy. In terms of e the strain energy density is written as

I~~ ~ U= -iej , (6)

3 where Cij can be identified as cp v with i = 4 and j = tv. Because Cij is symmetrical, it has at

most 21 independent components for any crystal. Crystal symmetries reduce this number further

(Love, 1944, Ashcroft and Mermin, 1976). For a cubic lattice, to which class the zincblende and

diamond semiconductors belong, there are only three independent components, namely C1I, C12,

and C4.

3 The three independent elastic constants of the diamond and zincblende (zb) semiconduc-

tors can be calculated by considering the following three strains.

(i) Under a uniform expansion, which changes a displacement x into x' = (1 + e) x, then

Sel - e2 - e3 = e and the other strain components are zero; the elastic energy density is then given

by

I U=3(CII+2C2)e2/2 (7)

IEU can also be expressed in terms of the adiabatic bulk modulus B defined by 8P = -B(8V/V,

where V is the crystal volume, 8V is its change and 8P is the corresponding pressure change.

I The result is U = B(8V/V)2/2 = 9Be 2/2, because the dilatation is 8V/V = 3e in the present case.

This establishes the relationship

B=(CII+2C 2)/3 (8)
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(ii) The next case to consider is a tetragonal shear strain e which changes a displacement

according to

(x, y, z) --+ (x + ex, y - ey, z) (9)I

The only nonzero strain components are e I = --e2 = e. Then U becomes

U=(CiI-C 2 )e2 . (10)

(iii) To calculate C44 we consider a shear strain c'which changes a displacement

according to

(x, y, z) (x + ey2, y + ex2, z) (11)

This strain contains e6 as the only nonzero component, Because C44 equals C6, the I

energy density is simply 3
U = C" e2/2 (12) 1

Although the macroscopic crystal distortion of the Bravais lattice caused by this strain is

described by Eq. (11), microscopically there is a relative displacement U = (0,0 u). the so-called

Kleimann (1962) internal displacement, between two successive atomic planes perpendicular to

the z axis. In other words, the relative displacements between the atoms on the stme fcc sublat- I
tice are governed by Eq. (11), but there is an additional induced relative displacement U between

the two sublattices. The directions of the displacements of atoms in a tetrahedral cell are shown

in Figure 1. In calculations one can use an arbitrary infinitesimal pair of e and u to obtain the 3
coefficients in the following quadratic expansion of the strain energy density:

U = Ou2/2 + Deu + C,4) e2f2 , (13)

where the force function 0 is related to the transverse optical phonon frequency co at r (the cen- I
ter of Brillouin zone) by 0 = gOc2 with g± being the reduced mass. In Eq. (12), D is a constant,

and C4 ) would be the shear stiffness coefficient if the internal displacement were not allowed.

I
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Kleimann (1962) defined an internal displacement parameter which is related to the equilibrium

value of u by u = ae/4 for a fixed e, where a is the lattice constant. Taking the first derivative of

U with respect to u in Eq.(13) and setting it equal to zero, one finds that the value is given by

= - 4D/(aD) (14)

I Finally the sought-after C4 is given by

C = C() - 2 a2/16 (15)

i Thus the internal displacement is an essential part of C4. These procedures will be used in the

theoretical calculations to be presented in subsequent sections.I
3. ELASTIC CONSTANTS AND SONIC WAVE PROPAGATION

5 The purpose of this section is to give the reader sufficient information to measure ultra-

sonic wave velocities and to deduce from them the elastic coefficients of materials of interest to

the electronics industry. We start from the definition of strain and develop equations that relate

I the elastic coefficients with wave propagation velocities in various crystallographic directions.

The cases taken as examples, cubic and isotropic, were chosen because of their prevalent role in

I electronic materials.

A number of techniques used to measure wave propagation velocities in materials are

I discussed. The researcher's decision on technique depends upon a number of factors, such as

3 accuracy needed, size and crystallographic orientation of available samples, equipment, etc.

Sample preparation is significant since a carelessly prepared sample yields useless velocity data.

5 Because the equipment needs vary widely among the techniques that can be used, references

containing information on each technique are given. Key papers chosen for citation were picked

I for their readability and their direct application to the measurement technique. Primary emphasis

has been given to techniques that are generally accepted, and that give results that are under-

stood. Throughout this section a general theory of elasticity due to Murnaghan (1951) is used.

I
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a. Elastic to Wave Relationship

Consider, as before, a point in a lossless elastic medium at rest, whose displacement vec-

tor, x = (xa), a = 1, 2, 3 are the cartesian coordinates of a point in the medium. In the presence

of a stress wave disturbance, the point moves to a new location, x = (x a) at time t. The

Lagrangian strains, TI, defined consistently with Eqs. (1) and (4) but with higher order terms

retained (Landau and Lifshitz, 1986; Murnaghan, 1951) are as follows: 3
,tXV ] (16)

2 ax 1 &4 &

where 8 is the Kronecker delta. Einstein summation convention over repeated indices is used

in this section.

By considering the internal energy per unit mass of the medium E(ra, IEP,S), where S is I
the entropy, we obtain a relationship between wave propagation and the internal energy of the

medium. If we restrict this discussion to a medium that is initially unstressed, then the intemal

energy per unit volume of the medium is pE(ra;ncp, S), where So is the mass density of the

medium in the unstrained state. By expanding this in a power series of the Lagrangian strains,

we obtain I
po]E(ra, 1a, S) = po0E(ra, 0, S) + -L C1vczpllwvimap + -L C WvpyTjvTjcp11., + .. (17)

The coefficients Citvp and Cipu are the second-order and third-order elastic coefficients

(adiabatic) as defined by Brugger (1964): I
CI2E "P = PO ( , (18)

I
I
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I II~aT c =o P nO n " (19)

I The wave equation can be derived (Goldstein, 1965, pp. 347) from Lagrange's equation

I la")
I where XP = aJ and L is given by

I Lffi po u polXaMa, S )•(21)

IDefining the particle displacement vector, u, as before

=(22)

and differentiating it gives

I-U au ~ v (23)

Combining Eqs. (22), (23), and (16) gives the srain tensor in terms of the particle displacements,

IIL 1aL t+ (24)

I Using Eqs. (21) to (24) in Eq. (20), and retaining first order terms in cUpxv, gives

I Piji -d- (25)

I We assume a plane wave solution to Eq. (25) of the form

3 uI =^ . il cos (kvxv - coX (26)

I
I
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where

= unit displacement vector in the Itth direction

= (uu) = particle displacement vector

k = (kv) = wave propagation vectorI

a) = angular frequency.

Substituting Eq. (26) into Eq. (25), we obtain the eigenvalue-eigenvector equation

I q VaCic -cp po V2a~4= (27)
where

(rV) = the set of direction cosines of R

v = 04 is the phase speed I
= Zk indicates the direction of wave propagation in the medium. N

For any given wave propagation direction, there are three eigenvalue solutions to

Eq. (27); these correspond to one quasiongitdinal and two quasitransverse polarization modes. 3
Relationships have also been derived for wave propagation in the presence of residual stresses

and for retention of the higher-order elastic coefficients (Cantrell, 1982; Breazeale and Ford,

1965).

Because both the stress and strain tensors are symmetric, one can reduce the number of U
independent second-order elastic coefficients to 21 (Landau and Lifshitz, 1986, p. 32). It is also

convenient to use the Voight (1928) contraction of the indices as in Eq. (6) which is used in the

remainder of this section. The number of independent elastic coefficients varies with crystal U
structurel, and is listed below.

D-12



1

Number of Independent

Crystal Class Elastic Coefficients

Triclinic 21

Monoclinic 13

Orthorhombic 9

Tetragonal (C4,S4,C4h) 7

Tetragonal (C4v, D2dD 4 ,D4h) 6

Rhombohedral (C3, S6) 7

Rhombohedral (C3N, D3, D3d) 6

Hexagonal 5

Cubic 3

(Isotropic) 2

Green (1973) and others have solved Eq. (27) for isotropic materials and for cubic crystals in the

[100], (1101, and (111 directions. Using the symmetry properties of the crystals, one obtains

the results presented in subsection b for cubic crystals, and in subsection c for isotropic solids.

b. Cubic Crystals

For plane waves propagating along the [1001 direction:

(1Cl=l,1K2=0,1C3=0) ;

as longitudinal (compressional) waves, pure mode (particle displacements: uI in direction of

propagation, u2 and u3 = 0

I ~vi=1~ i (28)

or as transverse (shear) waves, pure mode (particle displacements: ul = 0, u2 and u3 are perpen-

3dicular to the direction of propagation)

v2 = v3 = . (29)
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For plane waves propagating along the [110] direction:

(IC= M, ,2 = IN, KC3 = 0 ) ; I

as longitudinal (compressional) waves, pure mode (particle displacements: ul = u2 ,u3 -0)

v =(CI I + C2 + 2C) (30)

as Uansverse (shear) waves, pure mode (ul - -u2, U3 = 0)

" (I2I--C12 ' (31)

or as transverse (shear) waves, pure mode (Ul = u2 = 0, u3 0) I

V3=,. (32) I

For plane waves propagating along the [111] direction: I

OCI = 1/ff, IC2 = 1/f, to3 = 1/f-) ;(33)

as longitudinal (compressional) waves, pure mode (ul = U2 = u3)(CI = I/ + 2C - + 4C44).

v'

or as transverse (shear) waves, pure mode (ulic1 + u2K2 + u31C3 =0 or particle displacement per-

pendicular to wave propagation)

V2 = V3 (C I[C - C12 + C44). (35)

C. Iso wple SolIs

For the case of isotropy, all directions are equivalent, so we are left with two independent

constants (Lame' constants). The elastic coefficients can be expressed in terms of the Lame' con-

stants (Green, 1973) as follows. I

I
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Cl1  = C22 - C 33  = X + 29

3C2 - C13 = C23- (36)

C21 = C31 = C32 =

SC44 = C55 = C66 =

m For plane waves propagating in any direction (e.g., the x-direction):

(K1 = 1, 32 =0, IP3 -0 )

With longitudinal (compressional) wave, pure mode (particle displacements: uI in direction of

propagation, u2 and u3 = 0)

3I + (37)

3 With uansverse (shear) waves, pure mode (particle displacements: ul =0, and u2 and u3 per-

I pendicular o the direction of propagation)

V2 = V3(38)

I
I
I
I
I

I
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I. MEASUREMENT METHODS

I
4. VELOCITY MEASUREMENTS

To measure the second-order elastic coefficients (SOEC), one can determine the sound

velocity and the density of the sample, and calculate the combination of SOEC that the direction

of propagation requires. For cubic systems, sound velocities measured in the pure mode direc-

I tions equivalent to [100], [110], and [ 1111 make it possible to determine the three independent

elastic constants, CII, C12. and C4. Using care in sample preparation, and appropriate correc-

Itions for bond thickness and diffraction, the sound velocities can be determined to pats in I0.

The accuracy of a velocity determination is usually limited by the accuracy of the path length

measuremnt in pulsed and continuous wave techniques. With optical techniques, deflection

angles, wavelength measurements, and frequencies are determinant factors.

In general, there is little problem in obtaining a sound velocity measurement on the order

3of 1% uncertainty. But to improve on this, one must exercise additional car in the preparation

of surfaces, the control of temperature, the determination of acoustic path length, and in the

Sdetermination of travel time of the acoustic wave2. For single transducer configurations, where a

transducer is used to send and receive the acoustic wave, the base equation, for determining the

velocity using pulsed techniques, or pulse echo, without corrections, is as follows:

ZL (39)

U where v is the wave velocity, L is the sample length, and T is the round-trip time. Corrections 3

are made in the evaluation of T, and vary with the technique used in the measurement. Correc-

I tions for bond thickness (McSkimin, 1961), and for diffraction effects (Papadakis, 1961) can be

measured and/or calculated. Accuracies of some of the more frequently used pulsed techniques
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are given in Table 1. A comparison of the accuracies of various techniques are discussed by

Papadakis (1972, 1976). Using continuous wave techniques, the propagating plane wave model, 3
the basic equation without corrections is I

v = 2L Af (40)

where Af is the frequency difference between two adjacent mechanical resonance modes. Typi- I
cally, velocity measurement accuracy is good to about 1% to 10%. A correction factor (Chern, 5
1981) can be applied to the right side of Eq. (39) that corrects for the effects of the transducer

and bond on the mechanical resonances of the sample. When applied, the inaccuracy can be as 3
low as 5 parts per 100,000, neglecting inaccuracies in path length measurements.

If the sample is transparent, optical techniques offer a convenient method to measure I
sound velocity. For some of these techniques, the accuracy is on order of parts per thousand.

Still, some offer accuracies of parts per ten thousand and can be used with small samples, and

very high frequency ultrasonic waves (Breazeale et al., 1981). In general the calculation for 3
velocity involves the determination of acoustic wavelength in the medium, by using the equation

v &f (41)

where f is the frequency of the sound wave, determined by the drive frequency of the transducer, i

and X is the wavelength. Brillouin scattering also makes it possible to measure the sound veloc-

ity (Beyer and Letcher, 1969). In addition to measurement of an angle, the accuracy also

depends on determination of the wavelength of light in the medium; this requires a determination 3
of the index of refraction of the medium. I
5. ULTRASONIC MEASUREMENT TECHNIQUES

A survey of techniques and details for measuring ultrasonic velocities are available from 3
various sources (Breazeale et al., 1981, Papadakis, 1976, Truell et al., 1969). Consideration in 3
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this work will be given to three classes of techniques for absolute velocity measurements. A

I compilation of some of the features of each technique are listed in Table 2.

I s L wmple Preparation

The tolerance selected for preparing the sample depends largely upon the accuracy

needed in the determination. If a 1% measurement is in order, surface preparation and paral-

I lelism are less critical than if an accuracy of 0.01% is desired. Also important is the considera-

tion of correction factors needed to compensate for bond thickness and diffraction effects. At

3present diffraction corrections exist only for compressional waves. Theref . under equivalent

I experimental conditions, the most accurate determination of combinations of elastic coefficients

would be those that are calculated from compressional wave velocities.

3 It is assumed that a surface on the sample has been ground to optical tolerances, and that

the crystallographic direction of the axis of this surface has been determined. Typically, the

Icrystallographic directions are measured to within minutes of ar (McSkimin and Andreatch,

1964). The remaining critical issues are the parallelism of the reflecting surface to the reference

surface, and the flatness of these surfaces. Parallelism of the surfaces can be measured, for

U example, with an autocolliminator or a He-Ne gas laser and some minors. By placing the sam-

ple's reference surface on a stationary flat, dust-free surface, rotating the sample, and measuring

I the diameter of the circle traced by the beam reflected from the sample's top surface, and measur-

ing the total path length of the beam from the sample to the image screen, one can determine the

I parallelism of the surfaces. The surfaces should be parallel to an angle better than 0.01 Xacostc

I transducer diameter. For a typical 1/2 inch diameter, 10 MHz transducer and a typical solid, the

surfaces must be parallel to better than 4 x 104 radians (1 degree, 23 minutes). Higher frequen-

Icies, multiple reflections, and continuous wave techniques require proportionally smaller

tolerances.

I' Typically, one also tries for a flatness of better than 1/100 of an acoustic wavelength for

I accurate determination of transit times. If the resonant frequency of the transducer is 10 MHz,
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then the wavelength in a solid is in the neighborhood of 5 x 10 4 meters, which puts the flatness

requirement near 5 micrometers. Using an optical flat and Newton's rings analysis, one can

determine the flatness of the sample. For higher frequency transducers and continuous wave

techniques, the number of fringes are appropriately decreased. At 100 MHz, pulsed mode, for I
example, the tolerance is down to less than several fringes. By using flat lapping surfaces, this is

easily achieved. When multiple reflections are involved in the measurement, one must consider

that for each reflection, changes occur in the wavefront direction; the phase change across the

surface of the transducer at each reflection is due to lack of parallelism between the faces. For a

case where a 20 MHz transducer was used, and multiple reflections employed for the measure-

ment, Papadakis (1967) quotes a sample surface parallelism and flatness of better than

104 inches per inch. I
b. Plezoelectric Transducers

Selection of the piezoelectric transducer depends largely upon the wave mode, the elec- 5
tronic equipment to be used for the measurement, and the personal preference of the researcher.

In general, piezoelectric crystals4 such as quartz (high electrical impedance) and lithium niobate, I
or poled ceramics such as PZT (lead zirconate titanate), are chosen. Their physical and electrical 3
properties are covered elsewhere (O'Donnell et al., 1981). Other piezoelectric transducers,

including polymeric materials 5, are also available. The transducer diameter should be smaller I
than the sample to assure that propagation modes are not affected by the location of lateral

boundaries (Tu et al., 1955). This is especially important where measurements are taken on

small samples which may have their lateral sides close to each other. One also must consider the 5
problem as it relates to wave propagation, since wave modes other than those considered here

can be excited in materials of small dimensions. From studies on cylindrical specimens, the min-

imum sample diameter can be no less than approximately 2.5 X, where X is the wavelength of the

ultrasound in the medium. The transducer diameter is chosen after the frequency is selected. I
Generally, the transducer diameter should be no larger than half the diameter of the sample, to
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prevent any interference in the measurement from reflections off the lateral boundaries caused by

diffraction effects.

Selection of a bonding material depends upon the type of wave (compressional or shear),

and the temperature range through which the measurements are to be taken. At room tempera-

g ture, a good choice for both types of waves is Salol or phenyl salicilate benzoate (Papadakis,

1964), while Dow-Corning DC-200 silicone is good for longitudinal waves. At other tempera-

Stures (McSkimin, 1957), other bonding materials, such as Nonaq stopcock grease, are used for

compressional and shear waves. Various resins can be used with shear wave transducers; com-

I mercially prepared bonding materials are also available6 .

Application of the bond requires care to keep surfaces clean and free of dust. The bond

should be as thin as practical, taking care not to break the transducer. Often, applying some heat

helps with viscous bonding materials. When using Salol or phenyl benzoate for bonds, certain

procedures can be followed to assure uniform bonds (Papadakis, 1964).I
C. Noncontacting Tuunsducem

Th7ere ae three types of noncontacting transducers: capacitive transducers,

5(compressional wave excitation only) (Cantrell and Breazeale, 1977), electromagnetic transduc-

ers (EMAT) (Vasile and Thompson, 1977; Johnson and Mase, 1984), and optically stimulated

£ acoustic transducers (Prosser and Green, 1985). With the exception of the electrostatic trans-

ducer, (compressional with circular piston geometry), diffraction correction data has not been

U developed. However, bond corrections are not necessary as these methods generate the wave

i directly on the sample surface. Generally, the signal levels are quite small, and require high gain

and specialized circuits or devices to bring the signals to usable levels.

I
6. CORRECTIONS TO PULSE MEASUREMENTS: AN EXAMPLE

3 With some pulsed systems, and with care in preparing the sample and in taking the mea-

surements, one can expect round-trip time determinations to have standard deviations in the
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neighborhood of one hundred picoseconds. As corrections for bond thickness and diffraction are

often larger than this, it is necessary to correct for these sources of systematic error where possi- 5
ble. As an example, consider, for a properly prepared sample, that the pulse-echo overlap tech-

nique is to be used to measure the round-trip time for a tone burst. The time between the first-

received and the second-received echos will be determined. For simplicity, we will treat the case 3
of only one round trip in the sample. The measured time, T, is composed of several terms: the

true travel time, 8, the bond thickness contribution, Ab, and the diffraction contribution, AD. I

a. Bond Thickness

The model for the sample-bonded transducer system has been developed by Williams and

Lamb (1958), and has been used extensively by McSkimin (1961) and by Papadakis (1967).

They show that by treating the transducer bond sample system as an acoustic transmission line, it

is possible to calculate the effects of bond thickness on the measurement of transit time.

McSkimin (1961) shows that by measuring the change in the transit time when the system is I
detuned by a known amount, it is possible to determine the bond thickness in terms of measured I
quantities. This permits one to correct for the transit time through the bond material. Papadakis

(1967) discusses the correction in some detail, and applies it to his measurements on fused quartz g
and silicon.

Consider an undamped transducer bonded to one end of a sample with some bonding

material of known velocity and density; a relatively long wave is reflected from the interface

between the sample and the transducer bond system. The reflected wave from this interface I
experiences a phase shift from the impedance mismatch, which can be calculated from the

model. The calculation uses the real and imaginary parts of the effective impedance of the com-

ponents to obtain the contribution to the phase shift. By detuning thr frequency of the applied 3
tone burst, we can measure a corresponding change in transit time. Then, a comparison with the

measured values permits the calculation of the bond thickness, so that its effect on the measure- i
ment can be determined. The approach is outlined below. f
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The reflection coefficient for the system described above is given by

5Ik Z- (42)

i where Eb is the reflected pressure wave, Ei is the incident pressure wave, 4 is the specific

acoustic impedance of the sample (Zs = pc, where p is the mass density, and c is the wave propa-

Igation speed), and Zd is the effective specific acoustic impedance of the transducer bond system,

I given by McSkimin (1961),

@Z)-tnk 2tan kIAj (43

1 where Zl and Z2 are the specific acoustic impedances of the bond material and transducer mate-

rial respectively. Using similar conventions, k1 and k2 are propagation constants in the respec-

tive materials, as A I and A2 are the respective bond and transducer thicknesses, and j is the 47-.

IThe phase angle (McSkimin, 1961) is calculated by writing Eq. (42) in complex polar

form, and gives

3 l arcta( 21 7 IZJ (44)

Iwherel Ze I is the modulus of Zd, and (7c + 1) is the phase shift between the reflected and incident

pressure waves impinging on the interface of the transducer bond system with the sample.

When the system is driven at the transducer resonant frequency, fr can be calculated by

Iusing the fact that the transducer at fundamental resonance has a thickness of one half of a

wavelength; then I Zl becomes Zltan kl L1, which is generally quite small for a thin bond. Fre-

5quencies of off-transducer resonance, generally chosen as 0.9 fr, give a larger phase angle, since

the dependence of Zd upon off-resonance frequency excitation is large. As outlined in McSkimin

1(1961) and Papadakis (1967), we can calculate the time difference between phase-matched echo

3 trains, AT, caused by the change of drive frequency, and compare it with experimental results to

determine the correct condition for overlap.
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Assume an alignment of, for example, the first and second echos in the sample. The

change in the measured time between echos is given by I
AT =--L (n - M ) -f-L- (n - 2"Y") (45)f'- iX f NI

where p is the number of round trips (for our case, p = 1) of the ultrasonic tone burst in the sam-

pie, n is the number of cycles of mismatch in the tone burst, fL is the off-transducer resonance

drive frequency, fR is the drive frequency at transducer resonance, y is the phase angle at the g
off-resonance frequency (radians), and yRis the phase angle (radians) at the transducer resonance.

One can calculate AT for the case of no cycle mismatch, (n = 0) and no bond thickness (YR = 0) 3
from Eqs. (43) through (45). The measured value closest to the calculated value determines the

correct experimental cycle for cycle match. Following the experimental identification of the cor-

rect match, the measured AT can be used to determine the correction for bond thickness by

adjusting A 1 in Eq. (43) and solving Eq. (44) to bring Eq. (45) into agreement with the measured

AT values. The phase angle at resonance can be determined, and the travel time correction for 3
bond thickness, AB, is given by

AB = Y (46)2XfR

where yR and fR are the phase angle, and drive frequency respectively, both taken at transducer I
resonance. 3

b. DiffractIon Corrections 3
Diffraction effects for compressional waves in various crystalline symmetries have been

treated by several investigators (Seki et al., 1956; Papadakis, 1963, 1964, 1966) while others I
have treated isotropic media (Benson and Kiyohara, 1974; Khimunin, 1972; Rogers and Van

I
Buren, 1974). Papadakis (1972) has shown that without diffraction corrections, one can expect

errors in travel times as large as 0.25/fR. He also discusses (1972) diffraction corrections for the 5
technique of pulse-echo overlap technique. Using the dimensionless quantity

1
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s (47)

where S is the Seki parameter, a is the transducer radius, . is the wavelength in the sample, and z

5 is the distance of propagation, he writes the phase correction due to diffraction, AD as

AD [ v s2f ' (48)

where * is the phase shift in radians of the received wave front that is due to diffraction effects.

For the example, the sample is of length L which gives, Sn = 2W~a2 , and Sm = 4L/a 2 .

The true travel time, 8, can be written in terms of the measured time, T, and the

corrections,

1b D
8=T+A +A (49)

The thickness of the sample, L, is measured by conventional means, such as a high precision

micrometer, and the velocity of sound is given by

V = 2L (50)
I8

7. OPTICAL TECHNIQUES

Optical techniques have been used with success in the measurement of sound velocities in

5 transparent media. The methods include diffraction and scattering of light by sound waves. A

direct method of optically measuring an acoustic wavelength in the material can also be used.

IThe diffraction techniques considered here permit the determination of the wavelength of

3 sound. The wavelength, X!, is combined with the ultrasonic frequency, f, of the sound beam to

calculate its velocity, according to the expression,

f* =v , (51)

3where v is the speed of sound in the sample. In any optical technique, however, one must specify

the type of diffraction experienced by the light.
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a. Fraunhofer Diffraction of Light by Sound I
Consider an ultrasonic transducer, bonded to a transparent solid, generating ultrasonic

compressional waves that propagate into the solid. Further suppose that the sound wave encoun- 1
ters light traversing the same medium so that the light is diffracted. There are two different I
physical regimes that can produce the diffraction effects. One involves the formation of a corru-

gation in the phase fronts of the light that is due to the spatial variation in the index of refraction £
of the solid, as caused by the sound waves. This is called Raman-Nath diffraction (Raman and

Nath, 1935, 1935a, 1936, 1936a, 1936b; Born and Wolf, 1970). The second regime involves the I
reflection of light from the evenly spaced crests of the sound waves. These reflections occur I
under some conditions that are similar to x-ray diffraction by a crystal lattice; this is called Bragg

diffraction (Bhatia and Noble, 1953). Both types of diffraction can be used to determine the i
sound velocity of the material.

In order to determine which type of diffraction effect predominates (Nomoto 1942), a 5
dimensionless parameter (Klein et al., 1965), Q, is defined as

Q =K2L (52)
poK'

where K* is the ultrasonic propagation constant, L is the width of the ultrasonic beam, go is the I
index of refraction, and K is the propagation constant of light in vacuum. If Q > 9, one has I
Bragg diffraction. If Q < 1, Raman-Nath diffraction occurs. For 1 < Q < 9, the diffraction is

mixed. For illustrative purposes, consider a typical transparent solid (csound - 5 x 103 m/sec, I
index of refraction -1.5, and ultrasonic beam width -1.27 x 10-2 m), illuminated with light at

wavelength 632.8 nm. If the ultrasonic frequency is approximately 27 MHz or less, the interac- I
tion satisfies Raman-Nath diffraction conditions. If the frequency is greater than approximately 3
81 MHz, the interaction is governed by Bragg diffraction conditions.

D
3
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3 b. Raman-Nath Diffraction

For the case of Raman-Nath diffraction, we consider the light beam impinging on the

I medium at an angle, , with the light normal to the sound beam. The location of the diffraction

orders are given by the expression

where is the angle of incidence, 9 is the angle of diffraction, X is the wavelength of light in the

3 medium, X* is the ultrasonic wavelength, and n is an integer. One can experimentally set = 0,

which reduces Eq. (53) to

I
The ultrasonic wavelength can be determined from Eq. (53). With the measurement of the ultra-

Isonic frequency, one can determine the sound velocity of the compressional wave (Barnes and

Hiedemann, 1957). In determining the wavelength maem t and its uncertainty, it is neces-

sary to make an analysis of the optical setup, including the effects of Snell's Law at interfaces.

I
C. Bragg Diffraction

For the case of Bragg diffraction, the angle of incidence, *, is set to the angle of diffrac-

3 tion, and

nX = 2X* sin 40 (55)

where fB is the Bragg angle. Bragg diffraction is used to measure wave velocities in the fre-

3 quency range from approximately 100 MHz to the low end of the gigahertz scale. For example

(Krischer, 1968), the technique has been used to measure wave velocity to an estimated accuracy

3of better than 0.1%. It is also useful in measuring the local velocities within a sample (Simondet

I
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et al., 1976; Michard and Perrin, 1978). Measurements with precision of better than 0.01% in

homogeneous samples have been reported (Simondet et al., 1976). 3

d. Direct Measurements (Fresnel Diffraction) I
Consider a standing ultrasonic wave in a sample through which collimated light is passed

so that the collimated light beam is perpendicular to the sound beam. A measuring microscope

or similar optical device is focused so that the image of the wave can be viewed at the instrument 3
focal plane. Because the images of the wave fronts are V,2 apart, it is possible to determine the

ultrasonic velocity from measurements of ultrasonic frequency and measurements of the wave- i
length in the medium. The technique is sensitive enough to detect local variations in velocity

greater than 0.01% (Hiedemann and Hoesch, 1934, 1937; Mayer and Hiedemann, 1958,1959). I
e. Brinouln Scattering

Consider the scattering of a photon by a high frequency phonon traveling in a specific i

direction within a crystal. Application of conservation of energy and momentum to the scatter-

ing, coupled with the approximation that any photon frequency shift is small (Benedek and

Fritsch, 1966; Beyer and Letcher, 1969, pg. 47-50), gives

v* =2v(YL)sin(I), (56)

where v is the photon frequency, v*is the phonon frequency as well as the difference in fre-

quency of the scattered photons, C is the speed of the photon in the medium, v is the speed of the 3
phonon, and 0 is the scattering angle. If desirable, the Bragg condition can be used for construc-

tive reinforcement by adjusting 0 (Pollard, 1965). The technique gives three lines in the scat- i
tered photon spectra, that can be separated and measured with appropriate optical devices, such

as Fabry-Perot interferometen, to obtain v*. Eq. (56) can be solved for v in terms of the other

quantities. Brillouin scattering is useful in the investigation of the sound velocity of a material 3
near a phase transition (Fleury, 1970, p. 37-42). The technique has been used for both longitudi-

I
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nal and mixed modes. However, in one study on cubic crystals, no Brillouin scattering was

3 observed from an acoustic branch which consisted of pure transverse waves (Benedek and

Fritsch, 1966). Uncertainties in the index of refraction, the scattering angle, and the width of the

Stokes and anti-Stokes lines influence the accuracy of the determination. The precision is con-

3siderably better, however, with values of 0.1% as mentioned.

In stimulated Brillouin scattering, the photon scattering process is dependent upon the

3 intensity of the radiation striking the surface. With high enough light intensity, nonlinear effects

occur, which result in scattering by frequencies and harmonics created by harmonic generation

I (Breuer, 1965). A large buildup of acoustic intensity, both compressional and shear waves,

1 accompanies a threshold in optical intensity (Chiao et al., 1964). Other effects include the pos-

sibility of sample destruction from the intense radiation, and the line pulling effects of the laser

3cavity on the scattered light, which affects accuracy (Fleury, 1970, p. 57-58). Amplified acoustic

frequencies have been reported as high as 60 GHz.

I
i
I

I
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III. THEORETICAL AND EXPERIMENTAL RESULTS

I
8. AB INmO THEORY

It is clear from Section 2 that the calculation of elastic constants requires an accurate

computation of the variation in the total energy of a solid, from equilibrium to distorted config-

Iurations. Thanks to the availability of powerful computers, great advances in ab initio total-

energy calculation have been made in recent years. In this section we briefly discuss the approx-

imations used in ab in/to theory and summarize the calculated results.

The Hamiltonian of a solid consists of five parts: the two kinetic energies of the ions and

electrons, KI and Ke respectively, and the potential energies UnI among ions, Uee among elec-

I trons, and Uel between electrons and ions. The Born-Oppenheimer (1927) adiabatic approxima-

3 tion is a simple way to separate the electronic from the ionic variables. In this approximation,

because the ion speed is at least two orders smaller than the electron speed, one freezes the ionic

motion in a configuration specified by a set of ion position vectors Rn, then solves the

Schrodinger equation for that part of the Hamiltonian that involves the set of electronic coor-

dinates (Ti):3 ) (()i) ,) (K . (57)

where H = Ke + Uee +Uej. Thus the energy Ey is a function of the ionic configuration. The low-

est energy curve of the sum of Eg = E, + Un as a function of {Rn) then serves as the potential

3 energy for the ionic motion. A Taylor expansion of Eg about its minimum value E0 , i.e., the

quantum mechanical analog to Eq. (17), takes the form

I (in) =E 0+ 1 (58)
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where Una is the component of the small displacement Rn- Rn(O) with { 'n(O) I the

equilibrium ionic positions at the minimum energy E0. The force functions O are the second I
derivatives of Eg with respect to the displacements evaluated at the ion equilibrium positions.

The force functions are directly related to the elastic constants. For example, for a Bravais lattice I
they are given by Aschcroft and Mermin (1976) as 3

cUAP=- L,0(LL (59)

where the sum is over all the lattice vectors L.

Eq. (57) is computationally the most difficult part of the problem, because it deals with 3
about 1023 electrons that are interacting with each other and with the ions; the wave functions

have to be the properly antisymmetrized many-body functions. Self-consistent density-func- I
tional theory (SCDFI) (Hohenberg and Khon, 1964; Kohn and Sham, 1965; Callaway and

March, 1984), which casts the Hamiltonian into a density functional, reduces the many-body

problem to an effective one-electron problem. This theory has been tested in many crystalline 3
solids and the resulting elastic constants have been excellent, especially for semiconductors.

In SCDFT, the ground state energy of a solid is completely specified by single-particle 5
wave functions of the occupied states (4 ,. First the electron density is given by

,. (60)

Then the ground state energy is computed as follows: I
Eg = Ke + Uee + Ugl + UnI + Uxc ,(61)

where the different terms are given by the expressions 3
YQ = ,f; r L r ~ (62)

IUee =  P(r) Wr) d3r d3r'  (63)
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Ue.,-- = Z iC2 - d3r (64)

v &Uf2 .Z.4 /I - nl , (65)

3 = f p) e€[ir)] d3r • (66)

3 Note that n - m is excluded in the sum in Eq. (65). The meaning and t notations of the above

equations are mostly self-evident, except the exc[p] in Eq. (66); this is the correction term arising

I from the many-body exchange and correlation effects. The square bracket means exc is a func-

3 tional of p. Several different expressions for exc as a function of p, available in the literature (for

example, Wigner, 1934; Hedin and Lunquist, 1971; Ceperley and Adler, 1980; Perdew and

3 Zunger, 1981), have yielded similar results for the structural properties of semiconductors. A

minimization of Eg with respect to 4iv with the constraint that the total number of electrons is a

I constant, leads to the familiar Schroedinger single-particle equation:

3 + Ved]4)r = &*r) , (67)

3 where the Lv is a Lagrange multiplier and V is an effective one-electron potential containing

three pans:

I V =V +Vd+V C (68)

V. = e2 [ d3r' (69)

I

Vel is the Coulomb potential due to ionic charges Z

Vd- e2 J:. ZIt-/-rR. (70)

ID
I
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Finally, the exchange-correlation potential Vxc is given by

VKC = ExC + P . (71) 1iap

Thus Eqs. (59) and (67) through (70) form a repeated loop, p -+ V -- 4 p, and the cal-

culation must be iterated until self-consistency is achieved. Following this recipe for calculating 3
the total energy, one calculates Eg as a function of ionic positions, finds the equilibrium configu-

ration, then imposes a strain and calculates the strain energy to deduce the elastic constants, fol-

lowing the prescription of Section 4. The problem then becomes strictly computational. The

most challenging task is an accurate solution for the single-particle eigen states of Eq. (67). For

a crystalline solid, lattice translational symmetry simplifies the problem, and band-structure

techniques can be applied to obtain the solution. Because the strain energy is many orders of

magnitude smaller than the total energy, very precise computation is required if one hopes to 3
obtain meaningful elastic constants. So far at least two band structure methods have been

demonstrated as reliable for all three elastic constants: the plane-wave method using pseudopo- I
tentials (PP-PW) (Nielsen and Martin, 1983, 1985a), and the full-potential linearized-muffin-tin- i

orbital method (FP-LMTO) (Methfessel et al., 1989). Although the full-potential argumented

plane-wave method (FP-APW) (Krahauer at aL, 1979; Wimmer et al., 1981; Wei and Krahauer, 3
1985; Ferreira et al., 1989) has produced excellent lattice constants, structural energies, and bulk

moduli, the complete semiconductor elastic constants based on this method are not yet available. n

Even if the total energies at different distortions can be calculated accurately, there is still

the problem of searching for the equilibrium atomic positions in a distorted crystal, and the

numerical determination of elastic constants from energy differences. If the strain energy can be 3
calculated directly without taking the difference between two large energies, or if the derivatives

can be calculated directly, not only can the computation time be shortened but the numerical I
errors will also be reduced. The quantum mechanical theory of forces and stresses of Nielson I
and Martin (1985b), and the closely related direct calculation of elastic constants from linear

D
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response theory of Baroni et al. (1987) represent the status of efforts in this direction. The

5 former has been carried out for all three elastic constants for Si, Ge, and GaAs (Nielsen and

Martin, 1985a), while the latter has been done only on the bulk modulus for Si; both are based on

the PW-PP method. Table 1 shows a comparison between theoretical calculations and experi-

3 mental results. From this comparison, it is fair to say that we have a very reliable ab initio theory

for the elastic constants for crystalline semiconductors based on the self-consistent local density-

3 functional theory. Note that Table 1 also lists the results from an empirical tight-binding (TB)

theory to be discussed in Section 10.I
3 9. VALENCE FORCE FIELD MODEL

The preceding section showed that ab inirio theory for the elastic constants requires

3 complicated computations. Accurate ab iniio calculations for semiconductors have been

obtained only recently and only for several systems. On the other hand, phenomenological

I microscopic models of elastic constants for all semiconductors have been available for some

time. Of these, the valence force-field model (VFF) is perhaps the simplest and the most useful.

This topic has been reviewed and well analyzed in a paper by Martin (1970), and its conclusions

5constitute the main body of this section.

5 a. Dimnd Structure

The original VFF model by Musgrave and Pople (1962) was for the diamond structure, in

which the elastic energy is a quadratic form, in terms of the changes in each bond length Ari, in

3 bond angles A0ij, and in the products Ar Arj and AOij, between nearest neighbor bonds. For elas-

tic constants, Keating (1966) showed that the VFF can be simplified by the following approxi-

5 mation to the elastic energy of the crystal:

AE =I2- [A (ii ]2 + [A 2  (72)I 8d2~ 8d2 ,,
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where the bond index i runs over all the bonds, but the i and j sum only over those pairs of bonds

that are connected to a common atom. In Eq. (72) d is the equilibrium bond length and A(Ti• ) I
is the change in the dot product of the two bond vectors which start at the common atom, point

along the bond directions, and end at the the first- neighbor atoms. Following the calculational 3
procedure described in Section 2 for uniform expansion, the U in the VFF under a uniform

expansion can be shown to be U = 2(3ot + P) e2d2/f., where fl = a3/4 is the equilibrium volume U
per unit cell. Thus 3

B =(C1 + 2C12)/3 =( c + 0/3)/a (73)

For the shear strain described by Eq. (9), Eq. (72) yields U = 40 2/a. Thus according to Eq. (10),

CI 1-C 12 =40/a . (74) 1
For the shear strain described by Eq. (11) and with an internal displacement u = (0,0,u), Eq. (72) 3
yields the following expression,

where u = Tj a/4. A comparison between Eqs. (13) and (74) shows that € = 16 (a + 5)/a 3, D = I
--,(Ct - p)/a2 and C(4) - (a + P3)/a. Using these results in Eq. (14), we find that the Kleimann

internal displacement parameter in the present model is given by

=(a-P)/(a+P)=2C12/(Cll+C12) (76) 1
Eq. (15) then produces 3

C44 = 24 /[(a +P) a] (77)

The three elastic constants given above are not independent, and can be shown to relate to each

other by the Keating Identity (1966), or I
Ik-2C4 (Cl1+C 2)/[(C1-C2)(CIl+3C2)]1 - (78) 3

I
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b. Zincblende Structure and Coulomb Force

The Keating Identity (1966) holds very well for systems with the diamond structure but

i not so well for the zincblende compounds (see Table 3). One obvious difference between the

two structures is the presence of Coulomb interactions arising from charge shifts between the

cation and anion sublattices in zb semiconductors. Martin (1970) incorporated Blackman's

3 (1959) treatment of the Coulomb forces in the Keating VFF in the following manner. First, the

Coulomb energy was treated as P screened Madelung energy EM. For example, in a uniformly

-- expanded crystal with a bond length r, the Coulomb energy was taken to be EM =

-NcMZ*2e2/(er), where N is the total number of unit cells, (xM = 1.6381 is the Madelung

I constant, and Z*2/ is the effective charge defined by the optic-mode splitting:

S = Z*2 /E= (O2 - )/(42e) (79)

In Eq. (79) wl and wt are respectively the longitudinal and transverse phonon frequencies in the

long-wave-length limit. Then to counterbalance the Coulomb forces, a repulsive force term was

added and assumed to contribute to the bond-stretching energy in the form
A =-Y aM Z*2 1Ari/(42) (80)

E(

With the above two contributions added, the total strain energy is AET = AE + AEM + AER,

-- where AE is the VFF contribution in Eq. (72) and AEM is the change in the Madelung energy.

3 The energies AET are expanded in a power series, and only terms up to the second power in the

strain are kept. The AEM contributions arising from fixed values of the charge shift S = Z*2/

3- on the atomic sites under different strains were worked out by Blackman (1959). Using these

_ results and defining

s = e2/d4 S = e2Z*2Ad4c) , 
(81)
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Martin (1970) obtained the following modified expressions for the elastic constants:

C11 + 2C1 2 = (34X + D) Ia-0.355s , (82) 5
C1 1 -2C 12 = 4P/a + 0.053s , (83)

t=[(a-P)/a-0.294s]/CM , (84) 3
c =(cx+3)/a-0.l36s-CM 2 , (85)

where CM is defined as

CM = (a + 0) / a - 0.266s (86) 1
The above equations can be combined to yield 3

C=(2C12-c')/(c,+CI 2-c') (87)

where C' = 0.314s. Since the extra parameter s is fixed by the optic modes and the bond length,

the above results combine into a new identity, the Martin Identity (1970): m
IM = 2C44 (C I + C12 - C') (88)

(C11 -C 12 ) (C11 + 3C12 -2C') +0.831C"(Cl + C12)

Table 3 lists a set of experimental values of the elastic constants and the s values for a number of m
diamond and zincblende semiconductors. These values are used to compute the force constants

a and 13 and the identity expressions Ik and IM given in Eqs. (77) and (88) respectively. Several I
sets of data are quoted for some of the systems to show the uncertainties in the experiments for

these systems. The table results clearly show that the inclusion of the Coulomb energies

improves the identity relation; the deviations of IM from unity are 15% or less. Also listed are 3
the values for another identity relation, IBOM from Eq. (119), based on a tight-binding model to

be discussed in Section 10. Martin further studied trends as functions of the bond lengths d and 3
the ionicity scale fi of Phillips and Van Vechten (1969). He found that cE scales roughly as 1/d3 ,

i.e., 1
xd3 / e2 = constant , (89) 3
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where e is the electron charge. He also found the ratio between the bond-angle and bond-

stretching forces tend to decrease as fi increases and scales roughly as

P/c - I -f1  (90)

He further observed that if S of Eq. (79) is set equal to fi and if the a and 0 values are extrapo-

I lated, using Eqs. (89) and (90), from those fitted to the average values of the B and C1I - C12 for

I Si and Ge, then all the elastic constants can be predicted from Eqs. (82) through (86) to an accu-

racy of 10%.

5 It is interesting to compare Eq. (82) using the results of Eqs. (89) and (90), with Cohen's

(1985) empirical formula for the bulk modulus

S=(971-22)/d 3-5 , (91)

3 where B is in GPa, d in A., and X = 0, 1, and 2 respectively for.the group IV, II-V, and I-VI

semiconductors. Both Martin and Cohen's formulas give B values to better than 10% for all

I materials tabulated in Table 3. The B in Eq. (91) scales as 1/d3.5, while in VFF it scales as id5 .

10. TIGHT BINDING THEORY

5 In the semi-empirical tight-binding (TB) approach, the total energy of a semiconductor

crystal is assumed to be the sum of the electron energies e) in the valence bands plus repulsive

-- pair energies uij between the nearest-neighbor atoms (Chadi, 1978):

ET=Ebs+Ur=7 .Y kv)+ I -uij (92)
v k i>j

3 Furthermore, the band energies are interpolated by using a TB Hamiltonian which con-

tains term values of the atoms, and a handful of interaction parameters between orbitals of the

3 neighboring atoms. Despite the simplicity of Eq. (92), recent first-principles theories have given

some support to this approximation.
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One virtue of the TB approach over valence forcefield models is that it is a quantum the-

ory without much complication. As compared to first-principles theory, the TB approach is

easier to execute, particularly when applied to complicated systems such as alloys and superlat-

tices. In actual applications, the TB calculation either is carried out using the full band-structure I
calculation (BS), or is approximated by simpler local theory such as Harrison's (1980, 1983a and

1983b) bond orbital model (BOM). I
a. Band Structure Calculations

The simplest TB Hamiltonian contains the s and p atomic term values es and Ep for both I
cations and anions, and the nearest-neighbor two-center interactions VS3G, Vspa, Vppa and Vppn.

To be more explicit, the 8 x 8 k-dependent Hamiltonian contains the term values as the diagonal

matrix elements while the off-diagonal matrix elements between the cation and anion orbitals are 3
given by

HT((k) =C ldhld() , (93) 3
d

where the sum runs over the four first neighbor atoms specified by the bond displacements d. I
The Y's are the orbital indices for s, Px , Py and N. The hyj values are related to the two-center 3
V's by the Slater-Koster (1954) relations:

hss = Vss , (94) 5
hsx = a, VW, , (95) 3

hxx =?V2i, +(l 1)VI, , (96) 3
hxy = al (2 (Vpa- Vppx) , (97) 3

where a1i f xd/d are the direction cosines of d and the V's depend only on the length d. 3

I
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Once the values of these TB parameters and their dependences on the bond length are

3 known, the Hamilonian at each k inside the Brillouin zone (BZ) can be evaluated, and the sum-

mation of k carried out to obtain the band-structure energy, which, when added to the repulsive

U energy, gives the total energy of any specified geometry. All the elastic constants, associated

internal displacements, and transverse optical phonon frequencies, are readily calculable follow-

ing the procedure of Section 2. The only point to note is the k-sum, which without swain can be

3 calculated accurately by using the ten special k points (Chadi and Cohen, 1973) in the irreducible

wedge of the BZ. Under strain, the crystal symmetry changes; one needs to extend these special

3 k points to other nonequivalent wedges. However, since the sum of the valence-band energies as

a function of k is a rather smooth function, a uniform sampling over the whole BZ converges

very quickly. A 5 x 5 x 5 grid is sufficiently accurate for the required calculations. To avoid the

3 numerical inaccuracy inherent in direct energy subtractions, one can also calculate the second

derivatives directly by using perturbation theory.

I Perturbation theory starts with the expansion of the k-dependent Hamiltonian H in

powers of the infinitesimal strain parameter e, keeping terms up to second order.

H(k)=Ho+Hie+2iH 2e2 (98)

2

I where H0 is the strain-free Hamiltonian, and Hi and H2 are respectively the first and second

3 derivatives with respect to e evaluated at e = 0. The band energy contribution to the strain coef-

ficient then comes from the second derivative of Ebs with respect to e, denoted by

I2Ebs  (vkIH 2 A + 2  (99)

)2C v k v C k Ev(k)- Ec(k)

where cc (k) and Ic~k) are respectively the eigen energies and eigenvectors of Ho for the conduction

3 bands, and vk stands for the valence bands. Note that the inter-valence-band contributions in the

second-order perturbation sum cancel exactly so they are not needed in Eq. (99). To evaluate

ID
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these matrix elements one needs to have the first and the second strain derivatives of the two-

center interactions and the direction cosines cxi. For the strain parameters e defined in Section 2,

and for the two center interactions V that scale as 1/dn, the following results are useful.

(i) For the bulk modulus, the direction cosines do not change, and we have 1

aV = -nV, and a2 V/I 2 = n(n + 1) V. 3
(ii) For CI1 - C12 with e specified in Eq. (9), we get

ai/'e -ai(8i 1 - 612) e a/' 2 = ai [3(8i + 8.2) - 4] /3, V/ae =0 , and eV/&2 = 4nVt3.

(iii) For C44 with the strain e given in Eq. (11) and an internal displacement u, we find I
iaV/? = -nxlc 2V, aIV/oau = ncz3v/d, iaz1/ae = (81ca2 + 812 c) / 2 -(jal a2,I

aCXi/au = -- gd + Ctic 3/d, e2V/& = n(n- I)V/9, aZV/'au2 = n(n - l)V/(3d 2),
2 = +)U /12, = 3

ac/"e 2 ---(8 1 + B2) /1 2 aj/u 2

a2 V/(e au) = -n(n + 2)aja 2a3/d, and finally

aai/(ae 0u) = (8i6aC2a3 + kiiala 3 + 28i3ala 2 - 6Ci 1iaI 2CC3) / (2d).

Also note that three second derivatives of the band-structure energy are needed, namely I
a2Eia2 , a2Eb/(ce a-u), and a2Eh/'dU2 for the evaluation of C( ), D, and of Eq. (13)

respectively.

I
b. Bond Orbital Model

Harrison's (1980,1983a and 1983b) bond orbital model (BOM) emphasizes calculations I
of the TB total energy in terms of local energies. One special feature of the BOM is its univer- 1
sality. Another feature is that its simple, and often analytical forms provide direct insight into

the essential physics. Although BOM aims at predicting trends, it is reasonably accurate in many !

cases.

The band-structure energy, or the center of gravity of the valence band, in BOM is com- -
puted in the following steps. The terms involved are indicated in Figure 2.
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(1) Construct the sp3 hybrid orbitals I h > for each atom; these hybrid orbitals are directed

3 toward the neighboring atoms. For example, the hybrid in the [ 111] direction is given by

3 Ih>=(I s>+px>+py>'p >)/2 (100)

The hybrid energy is then given by h = < h I H I h > = (s + 3ep) / 4. In the zinc-blende

I structure, the cation hybrid energy 4 is in general different from the anion hybrid energy

Note that the two hybrid orbitals of the same atom but in two different directions are now

coupled by the so-called metallic energy V1 a < h I H I h' > = (e - EP) / 4.

1 (2) Construct the bonding and antibonding molecular orbitals, I b > and I a >, from the

two hybrid orbitals I hC > and I hA > directed toward each other along the same bond by

3 diagonalizing a 2 x 2 matrix withEE ande on the diagonal, and V2 = < hc I H I hA > as the off-

diagonal matrix elements. The resulting energies for I b > and I a > are eb = _h - 152 + V2 and

I +=+V 2-+V2 respectively, where k=( +et)/2 is the mean hybrid energy, V2 is the

3 covalent energy, and V3 = - ) / 2 is the polar energy. The eigen states can also be written

explicitly in terms of these energies:

I Ib>=t f a )/2 Y hA>+/(-3[ fhC > (101)

I Ia>= - f - )2 77hA>+ f(1 +hc> (102)

3 where ap is called the polarity and is defined as

|p 3 2+ 3Y o 13)
(3) The quantity vb would be the center of gravity of the valence bands, if interactions

I between states on different bonds were neglected. Harrison (1983b) incorporated these interac-

5 tions in a perturbation theory in which the change of the bonding energy is given by

AEb= I(b IH a 12/(eb-ea), (104)
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where the sum runs over the antibonding states of the surrounding bonds. Note that the interac-

tions among the bonding states lead to the formation of the valence bands, but do not shift their 3
center of gravity; therefore these interactions need not to be considered in the total energy calcu-

lation. This simplification transpires the major physics in the tetrahedral bonding of semicon- I
ductors. Including the energy correction Aeb, the final band-structure energy per bond (which

contains two electrons) is given by

Eb = 2Cb + 2 AEb (105) 3
Harrison (1980) referred to the second term as the metallization energy. Besides provid- I

ing a simple means for evaluating the center of gravity of the valence electron, Harrison's BOM

also provides a set of universal TB parameters. Based on comparison with the free-electron band 3
width (Froyen and Harrison, 1979) and with empirical TB parameters, Harrison (1983b) deduced

the following set of universal two-center interactions: I
Va-=Y1'Qu-lI(md 2) , (106) I

with i]..G = -1.32, Tispu = 1.42, 11W = 2.22 and lqpp = -0.63, where m is the free-electron

mass, and d the bond length. In units whered is in A and V in eV, Va, = 7.6211a/d 2. The

pair-repulsive energy u in the BOM is taken as resulting from the overlap of wavefunctions of 3
the orbitals on the two centers, and was shown to have the form

u = u(do/d)r , (107)

where do is the equilibrium bond length. The value of uo is determined by requiring that do is the 5
experimental value. Note that the d dependences of both Vaw' and u are taken to be the proper

scaling not only among different systems but also within the same system, as the bond length

varies under distortions. 5
Under these assumptions, the bond energy Ebond , which is defined as the difference

between the energy per bond in a semiconductor and the average energy per two electrons in the 3
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ft c atoms, i.e., Ebojd = Eb + uo - 2e, takes the following simple form for a nonpolar semicon-

i ductor (Harrison 1983a):

SEbnd = V2(1 -am + 9 /16) , (108)

where cem is called the metallicity and is defined as 2V1 /V2. For a polar semiconductor, Ebond

i becomes slightly more complicated,

3bn=ih2- 2+ ,Y[-Q+9-( ) (109)

where Ot =15 4 is called the covalency, and Vic and VIA are the metallic energies for the

cation and the anion respectively. The bulk modulus also takes a very simple form; for a group-

3 IV semiconductor, it reads

B=-2V2 (1-9al/16)/(Y d3) , (110)

and for a polar semiconductor, it becomes

I=22c--(c-)V,+' (2V3](~3 . (111)

3 These expressions show that the bulk modulus varies as lid 5 in the pure covalent case, and as

l/d 9 in the extreme ionic limit V3 >> V2. Note that this result is different from the 1/d3 5 depen-

I dence in Cohen's (1985) formula and the lid 4 scale in VVF.

3 Shear strains cause a semiconductor to distort away from perfect tetrahedral symmetry.

To deal with the shear elastic coefficient, the BOM has to be modified. A simple approximation

5 is the rigid hybrid model (Harrison, 1983b; van Schilfgarrde and Sher, 1987) in which the hybrid

orbitals of each atom are assumed to remain in their original tetrahedral directions despite the

I lattice distortion. Then the hybrids of two nearest neighbor atoms making up the bonding and

antibonding states no longer are directed toward each other, as shown in Figure 3. There is a

misalignment angle 0 between each hybrid and the line connecting the two atoms, and the cova-

3 lent energy V2 is given by
V2 (e) = - V,-cos2V,+3(1-cos2 0).V ]  (112)
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The lowest-order change 8V2, caused by an infinitesimal angular misalignment 80, is then given

by

8v - 3v - 3 (113)4I
Under the strain e described in Eq. (9) for CI - C12, there is no bond length change, and (80)2=

2e2/3. If one assumes that the metailization coupling is only through the metallic energies Vlc I
and ViA, as has been assumed so far, then the change of the crystal energy is the change of the

band-structure energy due to 8V2. Then according to Eqs. (10) and (105),

CII- C12 =-_La V 2 Ie2 3
2d3 aV2

(114)-- xc (ffVVG + 3Vppa -3Vppa)[I +3 _ 2 Q)(V2C + V2 /l(V2+ V2]I

4Q 3  
2+- 3)-])

Harrison (1983b) has pointed out, however, that in addition to V 1, other interactions such as V3

shown in Figure 2 produce important contributions to the shear elastic constant. By arguing that

these other contributions must cancel those associated with the change 8V2 arising from the met-

allization energy in a rigid rotation, Harrison deduced the following expression:

cII - cI=- -L (ff V, + 3Vpe- 3v~v ) .(115s)
4d3

Under the strain e for the C44 given in Eq. (11) and with an internal displacement given

by u = rid N3Tas described in Section 2, the bond misalignment angles for the four bonds have the 3
same magnitude with (80)2 = 2(11 + e/2)2/9. The four bond lengths also change, with the change

for one pair given by 8r = 8r2 = 8 + e and by 8r3 = 8r4 = - 8 + E for the other pair, where

8 = (e - T) d3 and E = (11 + e2) d/9. If again one assumes that the metallization is only 3
through VI, then the strain energy density can be shown to be given by

U =9B82 /(2d2)+ 3(CI,- C1 2) (80) (16)1
=B(e- )2/2+(C1 -C 2)(+C/2) 2 /3 (

I
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For a given strain e, U can be minimized with respect to TI, which yields the Kleimann displace-

ment parameter =t1/e with C given by

= (B - C/3)/(B + 2C/3) , (117)

where C = Cll - C12. Finally from U = C44e2 /2 the following relationship is established:

9/C4 =6/C +4/B , (118)

Nor

IBOM=9BC/[C 44(6B+4C)]=1 (119)

If one includes the effect of V'I, the energy density will involve an additional term which couples

I Sr and 80. Then the analysis is no longer simple.

The above explicit formulas for the elastic constants in BOM are not much more compli-

cated than the valence-force-field model. However, they relate macroscopic forces to intrinsic

5 atomic interactions. It is interesting to note that the simple identity relation of Eq. (119) holds

very welL As can be seen in Table 3, this result is certainly better than the Ik of Eq. (78), and is

I very competitive to Martin's identity IM which requires the inclusion of his particular treatment

of Coulomb forces. Because the Coulomb energy is not included explicitly in Eq. (118), its con-

tribution to the elastic constants is probably small.I
c. Numerical Results and Quantitative Applications

I To study the quantitative aspect of the theory, one first needs to establish the TB parame-

ters. Table 4 lists the term values we will use. The values of the outermost valence levels are

taken to be minus the experimental first ionization energies listed in Kittel's (1986) book, and the

5 other term values are deduced from calculated extraction or promotion energies using norm-con-

served atomic pseudopotentials (Bachelet et al., 1982). These term values are very similar to

U Mann's (1967) Hatree-Fock calculations used by Harrison (1980), which are also given in

I
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Table 4. The major difference in the two sets occurs in heavy elements, where relativistic s-

shifts are important, but were not included in Mann's results.

Table 5 lists the values of bond lengths, bond energies Ebond, the elastic coefficients B,

C CI 1 - C12 , and C44, and the zone-center TO phonon frequencies co for a selected group of 3
systems to be examined in the remainder of this section. Experimental values are also presented,

with the exception of extrapolations for the elastic constants of AlP and AlAs. Table 6 compares

results between the BOM and the full band-structure (BS) calculation using Harrison's universal

TB parameters. Except for the Ge and HgTe values, the agreement between the two calculations

for Ebond is within 10% or better. The calculated Ebond values are also in fair agreement with the 3
experimental values except for diamond. Since diamond has a much smaller bond length than

the rest of the systems, this discrepancy is an indication of a limit to the scaling rules for both I
Va' and u. Although the trends for the bulk moduli from both calculations are similar, the cal-

culational errors in the BOM can be as large as 50%. Also note that the calculated values of B

for most systems are only about one half of the experimental values. The tabulated values of C 5
and C4 for BOM are based on Eqs. (115) and (118) respectively. Considering the simplicity of

these formulas, the agreement with the band structure calculations is remarkable. However, the I
overall calculated values for these two shear coefficients are also consistently smaller than the

experimeal values.

The above comparisons show that the BOM and the BS calculations predict similar quali- -
tative trends for the binding energies and the elastic constants. In this regard, the BOM has the

advantage of providing explicit forms to show the dependences on bond lengths and polarities. I
However, the merit of the TB theory over the valence-force model is in its ability to incorporate

atomic quantities to mimic quantum mechanical effects. To be useful for specific material

science applications, the theory has to be more quantitative. Successful quantitative application 3
of the TB theory has been made by Chadi (1978, 1979 and 1984) in his study of semiconductor

surfaces. The comparisons in Table 6 indicate that the BOM should be treated differently than 3
the BS calculation when considered for quantitative applicatih.as. If one wishes to calculate the
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properties using the local picture, one should use the BOM. If one wants to carry out the TB

Hamiltonian precisely, one needs to adopt a different set of parameters based on the BS calcula-

tion. For this reason, we shall next consider quantitative applications of BOM and BS calcula-

U tions separately.

There are many ways to parametrize the TB theory. Chadi (1979,1984) used a simple

form for the repulsive energy u = a + b (d - do) + c (d - do)2 and the same I/d2 scaling for the TB

parameters Vaa'. To keep the theory as close to Harrison's (1983a and 1983b) form as possible

but free it from the l/d 2 and I/d4 scaling rules for Va' and u respectively, we assume the

following forms,

VOW = V°.. (do/d)r (120)

and

u = uo (do/d)m  (121)

where the superscript and subscript o indicate the values evaluated at the equilibrium bond length

do. For simplicity, the values of V, are taken to be Harrison's values given in Eq. (106) scaled

by a factor f:
V(o), = fVH . (122)

Thus there are four parameters for each system: the scaling parameter f, the powers n and

m, and the value uo. These parameters can be determined by requiring that the model produce

the correct experimental values for Ebond, do, CII - C12 , and B. Since C11 - C12 is only gov-

erned by V(, in both BOM and band calculation, it alone determines the scaling factor f. Then

the bond energy Ebond can be used to determine uo. The requirement that the first derivative of

ET is zero at do then determines the ratio of the powers n/m, which couples with the equation for

the bulk modulus to yield the values for n and m. One can then use these sets of parameters to

check the validity of the model by calculating other quantities not employed in the fitting, e.g.,

C4, the internal displacement parameter , and the optical phonon frequencies o) at the zone
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center. If the results are acceptable, the model can be extended to more complicated systems

such as alloys and superlattices with local environments similar to the bulk crystals.

Table 7 shows the results for f, n, m, and uo obtained from the above fitting procedure by

using the full band-structure calculations, and the corresponding values of C4, C, and co calcu- 3
lated for consistency checks. The scaling factor f ranges from 1 to 1.4 and tends to decrease with

an increase in polarity. In the power dependence of V0 ,o (d/d)P, n ranges from 2.8 to 4.3, I
which is larger than the n = 2 used in Harrison's universal TB parameters. For the repulsive pair 3
energy u = uo(dod)m, the power m ranges from 3.8 to 6.8. The ratio n/n falls in the range from

1.3 to 1.9, which is smaller than the rn/n = 2 used by Harrison. The calculated values of C4 for 3
most systems agree with the experimental data to 10% or better, except for diamond and ZnS.

Note that the experimental data for ZnS are rather dispersed. The calculated TO optical phonon U
modes at r in I/cm for most group IV and MI-V systems also agree with experiments to 10% or

better. The discrepancies for the I-VI systems are larger, about 15%. Reliable results for C from

both experiments and first-principles calculations are available only for a limited number of sys- 3
tems. The calculated C in the TB model agrees very well with those results, as shown in Table 1.

The overall results for C4, C and co in the TB calculations are equivalent to those based on the I
valence force model including Martin's Coulomb force corrections. By construction the TB

model also produces the correct cohesive energies, bond lengths, bulk moduli and shear coeffi-

cients ClI - C12, because these quantities are used to fit the parameters. 5
The results in Table 7 are based on the term values given in Table 4 and the TB parame-

ters scaled from Harrison's universal parameters. It is useful to know how the predictions are I
influenced by these parameters and the fitting procedure. Table 8 shows the results based on

Chadi procedure in which the TB matrix elements Va' are scaled as l/d 2, and the repulsive pair

energy is taken to be u = uo + uI (d -do) + u 2 (d - do)2. The parameter uo is set to produce the 3
correct bond energy, uI is determined by requiring the correct equilibrium bond length, and u2 is

fixed by the bulk modulus. Two sets of TB parameters are tabulated for each system: one is the 3
set used by Chadi (1978, 1979 and 1984), the other is the set obtained by multiplying Harrison's
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Vaa' by the scaling factor f listed in Table 7. For convenient comparison, the zero of the term

values is set equal to the anion s energy. Despite considerable differences in these two sets of

TB parameters, the results of the predictions from both sets are very similar and also very similar

U to those predicted from the other procedure used for the results in Table 7. The only noticeable

difference between the predictions in Table 8 and Table 7 is that the present procedure produces

larger phonon frequencies and slightly smaller C4 values. We also note that the fitted parame-

ters uo, ul, and u2 and the predicted values for Chadi's elastic constant set in Table 8, are not the

same as Chadi's published (1979) values; these give bulk moduli about 20% smaller than the

experimental values, but give considerably better phonon frequencies.

To parameterize the BOM, several different stages of approximations can be made.

However, for a general application, the full BOM steps presented in Eqs. (100) to (104) for cal-

culating Eb should be followed, regardless of approximations. The simplest model, referred to as

BOM(l), is to include only VIA and VIC in the the matrix element <b I H I a'> for the calculation

3 of the metallization energy in Eq. (104). The next approximation, BOM(2), is to include V as

well. Finally one can include all the first-neighbor interatomic TB parameters in <b I H I a'>; this

I will extend the I a'> to those belonging to the second-neighbor bonds. This last approximation

will be referred to as BOM(3).

Table 9 shows the results for BOM(1) following the parameterization procedure

Sdescribed in Eqs. (120) to (122). The fitted parameters f, n, m, and uo are substantially different

from those based on the BS calculations. The predicted C4 for the group IV and IIl-V systems

m are slightly larger than the experimental values, but good for the H-VI systems. The calculated

values, although not all smaller than those in Table 7, are smaller on the average. The predicted

phonon frequencies are too high.

The parameters and the predicted results from BOM(2) are listed in Table 10. These

parameters more closely resemble those in Table 8 than do the values from BOM(1). However,

Ithe predicted C44 values are still too small, and the C values are too large, but the a) values are

better than those from BOM(1).
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Table 11 contains the results from BOM(3); these approach those of the BS calculations.

In comparison with Table 7 and the experimental values in Table 5, the BOM(3) does well for ca,

produces slightly smaller C4, and probably slightly larger values.

In conclusion, the TB method is a reasonable approach to the static elastic properties of I
semiconductors. If carried out rigorously, the TB parameters in Table 7 will provide quantitative

results for superlattices, alloys, and possibly surfaces in which the local environments are similar

to those in the bulL The quantitative predications of BOM are not as good as the BS calcula-

tions, but are still reasonable. The fitted parameters given in Tables 9 to 11 allow different

stages of approximations to be made using the BOM. This is especially useful for more compli-

cated systems, because computationally the BOM is about two orders faster than the band struc-

ture calculations.

I
11. SEMICONDUCTOR ALLOYS

The systems to be considered in this section are alloys of the diamond and zincblende 3
semiconductors, both the ordered and disordered alloys. The ordered alloys include binary com-

pounds such as SiC, and ternary compounds, such as GalnAs2, in three crystal structures of the I
types CuAuI, chalcopyrite, and CuPt as shown in Figure 4 (Bernard et al., 1988). The disordered

alloys include binary solutions such as Sil.xGex and pseudobinaries such as Hgl.xCdxTe and

GaAsl.xSbx, where x is the fractional concentration. These alloys have been widely used and

studied; however, detailed information about their elastic constants is scarce both experimentally

and theoretically. One reason for the lack of rigorous calculation is that the elastic constants of I
these systems are more complex; existing theories are not as accurate, particularly for disordered

alloys. Another reason may be attributed to the fact that most properties of these alloys, includ-

ing their elasticity, were thought to be reasonably well approximated by the concentration 3
weighted averages of their constituents. Because of the rudimentary state of the theory, we shall

deal only with the simplest elastic constant, the bulk modulus. Our focus is on the difference 3
between the alloy bulk modulus B and the concentration weighted averaged value B, i.e.,
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AB = B - B. There are several fundamental questions that can be addressed. Is AB positive or

negative? Does the sign and the magnitude of AB depend on the state of order? How can we

calculate the bulk modulus in a disordered system? Analysis of these questions constitutes the

I content of this section.

a. Orderd Alloys

Long-range ordering has been found to exist in many epitaxially grown I-V semicon-

ductor alloys (Kuan et al., 1985; Jen et al., 1986; Ihm et al., 1987; Klein et al., 1987; Huang et

I al., 1987; Gomyo et al., 1986, 1987, and 1988; Norman et al., 1987; Shahid et al., 1987). Wei

and Zunger (1989) have given a rather complete list of these ordered alloys, most of which are of

the form ABC 2 existing in three different types of structures, CuAul, chalcopyrite, and CuPt; all

have their atomic planes stacked as ACBCACBC, but along three different directions, (100),

(210), and (111) respectively, as shown in Figure 4. There have been several first-principles cal-

3 culations made to study the stuuctura properties of these compounds; these focused mainly on

the cohesive energies and bond lengths. As indicated in the preceding section, one virtue to fit-

ting the TB model for the bulk semiconductors is to use it for interpolating alloy properties.

Table 12 lists the results for the bulk moduli of a number of IlI-V and I-VI alloys derived from

full TB band structure calculations using the parameters given in Table 7. Also listed are the

average values and percentage deviations from the mean AB / B. Note that all AB values are

negative and that most of the magnitudes are small, except for Ga2AsSb and Ga2PSb; the latter

I has the largest difference in the constituent compounds among the alloys listed. Although the

magnitudes of AB get larger for systems with larger differences in the bond lengths, the depen-

dence does not seem to be a simple function of the bond length difference. The uniformly nega-

tive AB values also appeared in the first-priciples local density functional calculations for

ordered GaAsSb alloys by Ferreira et al. (1989).

I The reason for the negative values of AB, in a very qualitative argument, is that the bulk

moduli of semiconductors scale inversely as high powers of the lattice constant, and, at the same
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time, the alloy lattice constant is approximated well by the mean value, by Vegard's law (1921). I
This implies that the value of B at the mean lattice constant should lie below the straight-line 3
average. Since the TB results for the bulk moduli constants should not be qualitatively different

from the valence force field model (VVF) predictions, most of the key physics for the bowing of

B should be contained in a VFF analysis. The major effects in the VVF can in turn be realized

from the following simple analysis. I
Consider the local structure of a CuAuI or chalcopyrite crystal ABC2 . Focus on a local

tetrahedral cluster A2B2C with the two A atoms and two B atoms on the vertices of the tetrahe-

dron and the C atom near the center. Let the coordinates of the two A atoms be (-1, 1, -1)d/N3

and (-1, 1,-1)dN "and the two B atoms be at (1,1, 1)dN3 and( 1,-1,-1)d . Let the force

constants be kA and kB, and equilibrium bond lengths be dA and dB for the AC and BC bonds I
respectively. To attain equilibrium, the central C atom is displaced by (E, 0, 0) dW/3. We further

define mean values i = (dA + dB)/2 and IE = (kA + kB)t2, the relative differences

6o = (dA - dB) / d and Ao = (kA - kB) / k, and d = d (I + 8). Then the AC bond is stretched by 3
an amount a (8 + W/3 - 82) from its equilibrium value and similarly the BC bond is compressed

byd(8-&3+ 82. The strain energy for any arbitrary 8 and e is given by I
AE -=2 [kA(8 + ..- 8 + k(8 -3 + 6/2Y]. When AEis minimized with regard to 8

and E, one finds 8 = 0 and E = 38o2, and the minimum AE is zero. If the crystal expands uni-

forly with 8 having a fixed small value, then becomes E = 38 / 2 - 3Ao8 and AE = 21(-A /

4)d 2 82. Thus the effective spring constant is

keff (lI &4) ,(123)I

which is smaller than the average value k. This weakening of the restoring force constant in the I
alloy is due to the internal displacement, represented by E in the above model, which provides an

extra degree of freedom for relaxation in response to the external stress. The bulk modulus B is I
proportional to keff/d, so the alloy bulk modulus minus the mean B is then given by 3

AB=(&A- a! - A! /4) ,(124)
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where we recall the definitions 80 = (d, - d2 ) dand Ao = (k - k2) Since and 80 and Ao tend

to have different signs, the bond length difference gives an extra negative contribution to AB (the

first two terms). If both the bond-stretching force constant a and the bond-angle restoring force

I IP in the VVF are included, the equilibrium value of AE is no longer zero; but the deviation AB

I can also be shown to be similar to Eq. (123) and is given by

AB=B 80 3"Aa+P -(x+2)(3a+ ) /4 , (125)

where Aa = (a, - a2) and a = (a , + a2)/2 and similarly for A andp. Eq. (125) reduces to
I (124), if 0 is set equal to zero.

The above descriptions illustrate two mechanisms for the negative AB values, the 1/aq

scaling of B, with q ranging from 3.5 to 9, and more degrees of freedom for internal relaxation.

Quantitative results should be described by TB, because in addition to the strain energy, there is

also some chemical effect built into the TB theory. Although these ordered compounds have

I been found from epitaxial growth, the bulk moduli are probably difficult to measure, because

I these alloys are not single bulk crystals and because the ordering is only partial. It is interesting

to note that the B values for a SiC/AN alternating layer superlanice along (100) and for the con-

I stituent compounds have been calculated by Lambrecht and Segall (1990) using the LMTO their

percentage deviation from the mean AB/B was found to be about -2%, which falls in the range of

the ternary alloys in Tables 12 and 13.

Not all the mechanisms considered above apply to the ordered compounds of the elemen-

tal semiconductors, because internal relaxation under pressure may not be allowed, e.g., if the

structure is assumed to be zincblende. Unfortunately, a simple analysis of the elastic constants of

the 4-4 compounds cannot yet be made, because the tight-binding and VVF parameters have not

yet been extended to deal with the atomic pairs not existing in the constituent crystals. However,

several first-principles calculations have been made on the ordered SiC and SiGe (Martins and

Zunger, 1986; Qteish and Resta, 1988; van Schilfgaarde, 1990). The main results are listed in
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Table 13; the theoretical results were calculated for the zincblende structure. The plane-wave

pseudopotential (PP-PW) calculation of Martins and Zunger (1986) for SiC gave a -21% value

for AB/B, which is in reasonable agreement with the experimental value of -17%. This is con-

sistent with the qualitative argument based on the l/d5 scaling of B. The theory also yielded a I
negative formation energy, which also agrees with experiment. For SiGe, the theoretical calcu-

lations cited in Table 14 gave positive formation energies, which are consistent with the fact that

no ordered bulk compounds of SiGe have been grown. However, some weak ordering has been

found in the epitaxial SiGe films (Ourmazd and Bean, 1985). The calculated values of AB/B for

the zincblende SiGe are either slightly above or just below zero. These differences, however, fall

within the uncertainties of the present first-principles theory. The best conclusion which can be

drawn from these results is that the B value for SiGe should be very close to the mean value. II
b. Disordered Alloys

Disordered binary alloys A1.xBx of diamond semiconductors and pseudobinary alloys 3
AI-xBxC of zincblende semiconductors AC and BC are considered in this section; they are not

amorphous materials as they still possess their constituent diamond and zincblende lattices I
respectively, as characterized by their crystal diffraction patterns. We shall consider the pseudo-

binaries first. The alloying atoms A and B in these alloys belong to a fcc sublattice, and the C

atoms to the other sublattice. However, the positions of the A and B atoms are not necessarily

locked precisely on the lattice sites. The extended x-ray absorption fine-structure spectroscopy

(EXAFS) data (Mikkelsen and Boyce, 1982 and 1983; Boyce and Mikkelsen, 1985; Balzarotti et

al., 1984 and 1985) have consistently shown a bimodal distribution of the bond lengths in these

alloys, although the average lattice constant follows the Vegard (1921) law a = (I - x)aAC + I
xaBC. Figure 5 shows an example of the results for the bond lengths in Gal.xlnxAs deduced by

Mikklesen and Boyce (1982) from their EXAFS data. In a first approximation, the crystal

structure of an alloy can be viewed as having the A and B atoms on their fcc sublattice with an

average lattice constant, while the C atoms are distorted away from their lattice sites, in a way
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similar to the local structures of the three ordered superlattices considered earlier. The difference

is that there is no long-range superlattice ordering of the A and B atoms in the disordered state.

This simple crystal picture is only a first approximation; the above EXAFS experiments also

I indicate that the sublattice of the A and B atoms is less than a perfect fcc. There are also theoret-

ical calculations (e.g., Sher et al., 1987; Ferreira et al., 1989) which suggest a certain degree of

short-range ordering in these alloys, namely that the arrangement of the A and B atoms is not

5 random. Figure 6 shows an example of the calculated deviations (Sher et al., 1987) of the proba-

bilities from random distribution, Apn = pn - P for Gal.xInxAs as a function of alloy concen-

tration x, where pn is the probability of having n Ga atoms and 4-n In atoms on the vertices of a

local tetrahedral cluster in the alloy, and PN = 4Cn (1 - x)n x4 "n, wh" 4Cn is a binomial

coefficient, is the corresponding value for the random distribution.

I The stuctural energy needed for calculating the elastic constants of a disordered alloy is

an ensemble average of the total energy over the distribution of the alloying atoms under strains.

It has been demonstrated (Ferreira et al., 1989) that the total energy of a semiconductor can be

decomposed into the sum of multisite correlation energies, from the single-site, the pair, and up

I to a cluster containing a handful of sites. In other words, the multisite correlation energies con-

verge to zero quickly at a manageable number of sites. This implies that the structural energy of

an alloy is an average of these multisite correlation energies. Connolly and Williams (1983),

working on metal alloys, proposed that these multisite correlation energies be deduced from the

ordered systems that are composed of the same atoms. This scheme allows a direct application

of the first-principles theory in the calculation of the energy parameters. These energetics can

then be used in the alloy statistics such as in the cluster variational method of Kikuchi (1951) or

in the Monte Carlo calculations to deduce the distribution functions or the average properties.

3 This theory has been carried out extensively for semiconductor alloys by Ferreira et al. (1989),

and respectable results have been obtained for the phase diagrams and alloy equilibrium proper-

I ties. For this theory to fit the elastic constants requires detailed dependences of the multisite

energies under different strains that have yet to be worked out. Also, the validity of using the
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energy parameters deduced from ordered alloys in the disordered systems needs to be examined I

further. 3
There is a different cluster approach, which directly relates the alloy Hamiltonian to the

distribution function (Gautier et al., 1975; Chen et al., 1987; Berra et al., 1988; Dreysse et al., 3
1989). In this approach one focuses on a particular cluster in an alloy ensemble. The average

energy per cluster can be written (Chen et al., 1988) as

7= 7m, (r + I h.)p.P .  (126) l
where en is the energy of a cluster detached from a given alloy configuration, and hnm is the 3
interaction energy, which is the change of energy of the combined system when the cluster is put

back into the alloy. In Eq. (126), pn is the probability that a cluster is of the type n, specified by 3
the number of A and B atoms and their arrangements, and Pnm is a conditional probability that

the surrounding environment is in state m when the cluster is in state n. The factor 1/2 in Eq. 1
(126) is to eliminate the double counting in the total average alloy energy < E > = M < E >, 3
where M is the ratio between the the size of the alloy and the cluster. If one writes (e) = Z

pne(n), then an effective cluster energy can defined as I
e~n)j~e..Lh.p. .(127)" 2

This procedure is particularly useful when the interaction energy is short ranged. One

can start with a small cluster and a given probability distribution, then calculate the effective I
cluster energies from Eq. (126). These energies are then used in a statistical theory to deduce a

cluster distribution, which in turn is used to calculate a new set of E(n) and distribution functions,

and the process is iterated until it converges. It should be pointed out that to compute the total

energy of an alloy quantum mechanically, one needs to solve the Schroedinger equation for a

Hamiltonian which does not have the lattice translational symmetry so indispensable in tradi- 3
tional band-structure theory. If the fluctuation of the alloy potential from the virtual crystal

approximation (VCA), where the alloy potential is approximated as the concentration weighed I
1
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average, is small, then the next leading correction to VCA can be obtained from perturbation

3 theory. This should work for most semiconductor alloys except for systems with large potential

fluctuations such as Hgl.xCdxTe (Chen and Sher, 1982; Spicer et al., 1982; Hass et al., 1983). A

more general but more difficult approach is to extend the present molecular coherent potential

approximation (MCPA) (Hass et al., 1984) to clusters and to achieve a triple self-consistency

(Chen et al., 1987): consistency between cluster distribution and Hamiltonian, between the

I Hamiltonian and electron density, and between the self-energy operator Z in the cluster CPA

theory and the potential fluctuations. To date this theory has been carried out only for metal

3 alloys, and then only within the single-site KKR-CPA with a random distribution (Schwartz and

Bansil, 1975; Gyorffy and Stocks, 1978). Major work is needed to determine if this approach

can achieve the same degree of rigor for disordered alloys as self-consistent density functional

theory, which has been successfully used in dealing with crystalline semiconductors.

The above idea has been applied to an elastic medium model to deduce a mean field

3 theory for the internal strain and bulk modulus in semiconductor alloys (Chen et al., 1988). This

theory starts by assuming that the alloy has an effective lattice constant and effective modulus.

When part of the effective alloy medium is replaced by a specified cluster, there will be strain

3 energy introduced. It was shown that this strain energy can be taken as the effective energy e(n)

for that cluster;, the probability distribution pn within a statistical theory can then be deduced.

3 The internal strain energy is calculated as E = M<e> = MIpe(n). When the alloy is under an

external pressure SP, the effective cluster energy will change by an amount 8e(n), which implies

3 a change of the total energy by an amount 8E = M<Be (n)>. Then the bulk modulus of the alloy

3i can be obtained from AE = (SP) 2V/B, where V is the alloy volume. The mean-field nature of

this approach is evident from the fact that the calculation requires knowledge of the alloy lattice

if constant and elastic constants which are only assumed and are required to be calculated self-

consistently. To illustrate this self-consistency procedure, let us consider the following simple

I spring model for a random pseudobinary alloy AI-xBxC. The cluster corresponds to the four

abonds surrounding an "impurity" atom A or B, and the environment of the cluster corresponds to
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the twelve bonds which connect inwardly to the cluster and outwardly to a rigid lattice of the

effective alloy. It is worth mentioning that there have been detailed analyses of the valence-field 3
force models for the strain energies of semiconductor alloys in regard to the range allowed for

lattice relaxation (Martins and Zunger, 1984; Chen and Sher, 1985). It was found that by I
neglecting the bond-angle forces, one can use a shorter range of lattice relaxation to obtain the g
correct mixing enthalpies and bond lengths. The simple model considered here works amazingly

well for these properties. a
Let the spring constants for the pure AC and BC compounds be kA and kB respectively,

and the effective alloy spring constant be k, with similar notations for the bond lengths dA, dB I
and d. When an A atom is embedded in the medium, all sixteen bonds under consideration will

relax, and the strain energy is given by 1
e(A) =k (d-dA)2 , (128)

where 3
kl = 4kA k/(3kA + k) (129)

A similar energy e(B) is obtained, when a B atom is embedded. The effective bond length d is

obtained from a minimization of the average cluster energy E = (I - x) e (A) + xE (B) with 3
respect to d, which yields

d=[(1-x)kldA+xk2 dB]/[(1-x)kl+xk2] (130)

When the alloy is compressed, the alloy bond length is reduced to d(l - e), where e is a macro- i
scopic strain corresponding to the external pressure. The pressure induced strain energy for the

sixteen bonds in the medium is BE = 8k(de)2 , and 8E = 2k(de)2 for each cluster. Embedding an

A atom in this compressed medium, one finds the total strain energy for the sixteen bonds to be i
EA=Ikl (d-dA-4de . (131)

2I

I
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To obtain the extra cluster energy &8(A) induced by the pressure, we subtract E(A) of Eq. (127)

j and the background energy for the surrounding twelve bonds from EA to give

I 8(A) = -4k, (d - dA)d + 8k (de)2 - 6k (de)2 . (132)

Similarly the following expression for &g(B) is obtained when the embedded atom is B:

&c(B) = -4k 2 (d - dB) de + 8k2 (de)2 - 6k (de)2 (133)

I Thus the change of the average cluster energy that is due to the pressure is given by

I 8E = <8 (n)> = (I - x) & (A) + x&c (B), which, when equated to 2k(de)2, leads to the following

self-consistent equation for the effective spring constant k:k = (I - x) kl + xk2 . The k can now

3 be solved analytically when both the expression for k in Eq. (129) and the similar expression for

k2 are used. The result is

k=c<k>1-3x(l-x)(k/<k>2] ,(134)

I where <k> = (1 - x) kA + xkB is the mean spring constant and 8k =k - kB the difference. It is

interesting to compare this result for the 50/50 alloy, i.e.,k = k(1 .Ao) with the value

k'(I - A /4) in Eq. (123) for the ordered alloys in the CuAul and chalcopyrite structures. The

3 alloy spring constant is slightly below the straight line average, and the bowing is larger for a

disordered alloy than for the corresponding ordered compound. Using the effective spring con-

stant of Eq. (134), we find that the effective bond lengths for most alloys also bow slightly below

3 their mean value,

d = <d> + 4x (I - x) (dA- dB) (kA- kB )k/[(3kA + k)(3kB + k)] (135)

because the spring constant tends to increase as the bond length decreases.

3 To compare the calculations above with experimental data for pseudobinary alloys, we

were able to find results for GaAIAs (Landolt-Bornstein, 1988), CdZnTe, CdMnTe, and HgCdTe

I (Quadri et al., 1986). For GaAlAs, the following linear x dependences were measured (Landolt-

1 Bornstein, 1988): C1I = 11.85 + 0.14x, C12 = 5.38 + 0.32x, and C44 = 5.94 - 0.05x. This lack of
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detectable bowing is expected, because of the nearly equal bond lengths of the two constituent

compounds and small differences in the elastic constants. The bulk moduli in the three II-VI !

alloy systems mentioned were obtained from high-pressure x-ray diffraction daia. For HgCdTe,

the results are similar to that of the GaAlAs in that both the bond lengths and the bulk moduli of I
HgTe and CdTe are so close that the differences of B between the alloys and the pure crystals

were beyond the experimental resolution. However, a 5% Zn in CdZnTe alloy was found to give

a 15% increase in the B value from the pure CdTe value and a 10% Mn in CdMnTe gave a 21%

decrease (Quadri et al., 1986). These significantly large changes in the B values caused by

smaller concentrations cannot be explained from the above considerations. 3
The qualitative model considered above does not apply to the binary alloys AI.x Bx,

because in these alloys both the A and B atoms can be found in both sublattices, and the local I
bond length arrangement is more complicated than the pseudobinary alloys. However, one can 3
expect that there are still more degrees of relaxation in the disordered binaries than in the ordered

compounds. Therefore one would conclude that the bulk modulus of the disordered 50-50 SiGe 3
alloy would have a smaller value than those tabulated in Table 13 for the ordered compounds. At

least one would not expect the alloy B values to be significantly larger than the mean values B. I
However, the only experimental data available (Bublik et al., 1974), Table 15, show that all three

elastic constants for these alloys at three different concentrations exceed the values for Si, and

that the AB /B is as large as 20%, despite the fact that the bond length difference between Si and

Ge is only about 3% and the measured alloy lattice constants are only bowed slightly below the

average. This, and the unexplained results for the I-VI alloys, point to the need for a more sys- -
tematic study of the elastic properties of semiconductor alloys, both experimentally and I
theoretically.

D
I
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IV. DISLOCATIONS AND HARDNESS 7

3Hardness has proven to be a useful probe of the mechanical properties of the brittle semi-

conductors. Here we will use the term hardness to refer specifically to Vickers' hardness, unless

B other wise noted. In the Vickers' hardness measurement, a square pyramidal indenter is used and

the hardness number is given by the applied load divided by the area of the indentation (i.e., units

I of pressure). Hardness has been found to be an intrinsic property of the material, because it is

i relatively independent of the applied load. One advantage of hardness measurements for semi-

conductors is that, unlike bending tests, only small samples are necessary for conventional

3 Vickers' hardness measurements, or for nanoindenter measurements (Fang et al., 1990), and rel-

atively thin epitaxial films can be probed. Additionally, unlike conventional tests used to mea-

i sure yield stress, hardness measurements can be made at room temperature, which is far below

the usual plastic regime for most semiconductors. As such, the hardness measurement provides a

convenient and usable probe.

3l The question remains, though, as to the interpretation of the hardness measurement in

semiconductors: just what property or properties of a semiconductor are we measuring when we

3 measure hardness. In metals, an empirical relationship is found between the hardness, H, and

yield stress, Y, such that H = 3 Y.

In metals, this relationship can be justified on the basis of continuum theory, as discussed

5 in McClintock and Argon (1966). In semiconductors such a simple relationship between H and

A is not necessarily appropriate for several reasons. During deformation in metals, many slip

3 planes can be active because the Peierls barriers for dislocation motion in most directions are

low. In contrast, because the bonds in semiconductors are strongly covalent, the Peierls barriers

are high and dislocation in the (111) 1. <T10> slip system dominate.

D-63



I
To date, there is no complete quantitative theory of hardness in the semiconductors in

which the temperature dependence, photoplastic effect, and the alloy hardening effect are

included. Sher et al. (1985) proposed a model of hardness for the semiconductor compound that

gives good quantitative agreement with experiment, but this model does not provide an explana- I
tion for several of the observed dependences of hardness. This model of hardness in semicon-

ductors differs from more conventional interpretations and suggests that hardness is dominated

by dislocation-dislocation interactions, as opposed to dislocation activation and motion terms.

We discuss the results of an improved quantitative model of hardness below. I
12. SUP SYSTEMS

In the dislocation interaction hardness model, Vickers' hardness is found to be dominated

by the interaction energy of an idealized array of dislocations that has been generated by the I
indenter. The idealized array can be considered as a first approximation to the more realistic dis-

location tangles found experimentally, leading in higher order to an expansion in dislocation 3
configurations. In this idealized array, no account is taken of the true slip systems active in the

semiconductors. Experiments (-irsch et al., 1985) have demonstrated that, in Vickers' hardness,

slip occurs primarily on the I 111) 1/2 <I1> glide set, where the threefold symmetry of slip and 3
rosette lines occurs at the intersection of the ( 111 ) planes with the (111) surface.

For indentation on the (11) plane, dislocations can glide on the (111) plane parallel to

the surface or on one of the three other (I 1 ) planes with a total of four active slip planes.

Although the detailed analysis differs from that given previously (Sher et al., 1985), the contribu-I

tion to the hardness from the interaction energy is comparable to that previously calculated. This

contribution to H is directly proportional to the shear coefficient.

I
I

D-64I

I



I
13. PEIERLS ENERGY

The Peierls energy is difficult to calculate precisely because of dislocation charge effects

and reconstruction at the dislocation core. In the context of the hardness measurement we calcu-

3late the Peierls energy in order to evaluate the importance of this contribution to the Vickers'

hardness number. Although it is generally agreed that dislocations in semiconductors move

through the generation and propagation of double kinks, in the hardness measurement, the region

about the indenter is grossly plastically deformed. Because the dislocation velocity is low at

I room temperature (see below), the large dislocation pile-up model proposed by Sher et al. (1985)

may be appropriate. If the dislocation separation is small, dislocation motion through kink pro-

cesses will be suppressed, and the dislocations will propagate as a complete unit.

3To get from Configuration A to Configuration B in Figure 7, we must break a row of

bonds. Since the long-range strain fields should be comparable in the two configurations as well

3as in intermediate configurations, the Peierls force can be calculated from local energy consider-

ations only. The energy to break a bond at the dislocation core is approximately given by:

Ub = 2 + 2  -e - VO+ (h-4) , (136)

I where V2 is the covalent energy, V3 the ionic energy, ea, the metalization energy, Vo the bond

3 overlap energy, and eh and et the hybrid energy for the anion and cation, respectively. The first

two terms in Eq. (136) account for the loss of the bonding energy of the two electrons in the

breaking bond, the third term accounts for regaining the repulsive interaction energy of the bond,

and the fourth term accounts for the energy gain to transfer electrons back from the cation to the

anion. We note that the electron orbitals of the atoms at the dislocation core are left in the sp3

-- hybrids after the bond breaking. The expression in Eq. (136) represents a theoretical maximum

of the Peierls energy, since no reconstruction at the core has been included.

D
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To calculate the Peierls energy per unit length, we consider a primary dislocation in the

<iO> direction in a zincblende compound. The number of bonds per unit length in 3
<TIO> is given by 1/b where b is Burger's vector. Thus, the Peierls energy per unit length is

given by I
-.- = 8 -U-k (137)

where d is the bond length. g
We can now calculate the Peierls force, or the force per unit length necessary to move a

dislocation over the potential barrier, as illustrated in Figure 8. The Peierls energy is related to 3
the Peierls force through

Ep=FpL, (138) 3
where 3

L = b (139)

is the distance between Configurations A and Configuration B. Solving for Fp in terms of Ub

and d, we arrive at: a
3~Ub

FP4 !L (140) I

or 5
or - U b  

(141)--V2 8 d3 •

Values for Ub andrp are summarized in Table 16.

Now we incorporate the Peierls energy into the hardness model for low temperature 3
where the full barrier must be surmounted. The Sher model is based on energy considerations.

The Vickers' hardness number is given by the applied force divided by the area of indentation. I
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Multiplying the numerator and denominator by h, the depth of indentation, we have H =

I E/(W2 h), where E = Fh is the energy of indentation, and h is the depth of the indentation.

Including the interaction energy only we have:

H = Hin (-- [ - An (2Q'f) + + sin2  (142)

I where 0 is one half the indenter angle. To include the Peierls energy, we consider the total

5 energy necessary to move the dislocations from their initial to final positions in the idealized

model. The hardness is then given by:

I H = Hint + Hp (143)

Iwhere
Hp = h -EE(144)

W21i

is the Peierls contribution to the hardness, and Ep is the total Peierls energy expended. The total

length of dislocation to be moved is calculated to be:

LT =1,, =3 os2 J (145)

The total Peierls energy is given by:

F = --k LT - Ub COS2 0 (146)b 6 b3

Thus, we have:

-- Hp =-LUcos0sinO . (147)3 b

I Fore0 = 45":

-HP =Ub (148)
I D6b3
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Values of Hp are summarized in Table 16. Several features of Hp should be noted. First,

we have used a zero temperature value of the Peierls energy. Because hardness measurements 3
are typically done at room temperature, one should take the thermal energy into account; this will

reduce the values of Hp from those listed in Table 16. Also shown in Table 16 are Hint, Hint + 3
Hp, the best theoretical estimate for H, and Hexp. Note that, like Him, Hp is independent of the

applied load, in agreement with experiment. Also note that Hp improves the agreement between

theory and experiment for the hard, nonpolar materials. For the softer, more ionic materials, H is 5
overestimated by the theory. The overestimation of H may be because of neglect of dislocation

velocity effects and their temperature dependence, as discussed below. 3

14. TEMPERATURE DEPENDENCE i
Here we summarize the experimental results and discuss a tentative theory of the temper- 3

ature dependence of the hardness.

Several recent studies on the temperature dependence of hardness serve to illustrate the 5
behavior. Results for GaAs and Ge are shown in Figure 9. The (111) and (100) faces of GaAs

have been examined by Hirsch et al. (1985) and Guruswamy et al. (1986) respectively. Results I
for the Knoop hardness on the (100) face of n-type Ge are also shown (Roberts et al., 1986). The

(100) face of GaAs and the Ge show a definite temperature dependence with a relatively temper-

ature independent region for T < 450K and an exponential temperature dependence for T> 

550 K:

H =Hoe T (149)

withI

U 0.24 eV (150) 3
for (100) GaAs. The results for GaAs ( 11) appear to follow a similar behavior.
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The temperature dependence of hardness suggests that two different mechanisms may

3 determine hardness in the two temperature regimes. At low temperature, the hardness is nearly

independent of temperature and may be limited primarily by dislocation interactions. Disloca-

tion mobility is low at low temperatures, and the tendency for dislocation pile-up is high. At ele-

3 vated temperature, the dislocation mobility is increased, so that dislocations move more readily

under an applied stress. Therefore, at higher temperatures, dislocation pile-up is reduced and the

3 hardness is limited by lattice friction, which shows a strong temperature dependence. We are

currently investigating a quantitative theory of the temperature dependence of hardness, which

3 also includes the dissimilar velocities of the a and 1 dislocations.

I
I
I
I
U

i

U

I
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V. CONCLUDING REMARKS

3 The experimental methods available to measure elastic constants vary greatly in their

accuracy and in the size of samples required. Generally, those that measure the velocity of sound

3 are quite accurate, some yielding elastic constants to one part in 106 These methods are also

capable of measuring higher order elastic constants, a subject not treated in this paper. However,

the samples required for these measurements must be large, of the order of several centimeters,

3 and must be perfect bulk single crystals. Many semiconductors, alloys in particular, are only

grown as thin films on disparate substrates. For these examples, the velocity of sound methods

3 fail, and the less accurate Raman and Brillouin scattering techniques become the methods of

choice. Their accuracy is about I to 4%, which is adequate for many practical applications.

I Most group IV, m-V compound, and II-VI compound semiconductors have been studied,

Band their elastic constants tabulated. A few remain to be examined, and several should be reex-

amined because different experimnters do not agree on the results. The situation in the pseu-

U dobinary alloys is quite differenLt Few alloy systems have been adequately studied; those studied

have mostly fallen into the class of materials in which the bond lengths of the constituents nearly

5 match. More interesting results are expected from alloys with a bond length mismatch. Such

studies would yield a wealth of information on mechanisms responsible for correlations in these

alloys, and perhaps even on those responsible for producing the ordered alloys that have been

5 grown recently.

We have emphasized the utility of various parameterized models for treating nonideal sit-

I uations. However, the most powerful new theoretical developments are in the area of flrst-prin-

ciples theories. The advent of self-consistent local density theories (Hohnberg et al., 1964) over
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twenty years ago, and the advances in methods to solve the Schrodinger equation, are making

real inroads (Methfessel and Van Schilfgaarde, 1990). 3
Just a few years ago, it took many hours of supercomputer time to solve problems, so

only a few existence proofs had been done to demonstrate the accuracy of local density analysis. I
The new LMro solution methods (Methfessel and Van Schilfgaarde, 1990; Harris, 1985;

Foulkes and Haydock, 1989; Van Schilfgaarde et al., 1991), and the Can and Parnello extensions

(1985) of APW, increase solution speeds into the realm where it is practical to attack may U
mechanical property problems. Moreover, LDA has now been extended to include many-body

corlcons (Hybertsen and Louie, 1987), so its few percent deviations from experiments directed 3
at properties sensitive to total energies should soon be corrected. Conduction bands also arm cor-

rected by the addition of the many-body effects, so optical and transport properties can also be 3
predicted with accuracy. Surfaces, disordered alloys, and other situations where symmetry is 3
lost, continue to be a challenge, but molecular dynamic techniques, Green's function methods,

and variants of the coherent potential approximation, show promise of providing adequate solu- 3
tions. As computational speeds continue to increase, these methods will evolve into practical

engineering tools. I
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FOOTNOTES

IWe assume that the angles defining the orientation of axes in the crystal are not specified. For

a further discussion, see Landau and Lifshitz (1986).

2The accuracy depends upon the correct choice for the resonant frequency of the transducer,

which can be obtained from the fact that it is 1/2 wavelength in thickness. Using a micro-

1meter, and the wave velocity of the transducer material, one can calculate the resonant fre-

*quency of the transducer. Transducer off-resonant conditions can have a relatively large

influence on the measurement of round-trip time for pulsed studies.

3Other influences on the -- t of round-trip time are bond thickness and diffraction.

These ae discussed in various papers, including McSkimin (1961) and Papadakis (1967,

11972).
4Information on piezoelectric transducers is available from Valpey-Fisher Corp., 75 South

Street, Hopkinton, MA 01748, and Crystal Technology Inc., 1060 E. Meadow Circle, Palo

Alto, CA 94303.
5A film, sold under the tradename KYNAR is an example of this. Information on this material

3 can be obtained from Pennwalt Corp., Box C, King of Prussia, PA 19406-0018. Some of the

properties are covered in Bloomfield et al. (1978). Lead attachment to KYNAR films is cov-

ered in Scott and Bloomfield (1981).

3 6For example, suppliers of damped ultrasonic transducers can supply material suitable for high

temperature and shear measurements. Two comparies are Panametrics, Inc., 221 Crescent

St., Waltham, MA 02254, and Harisonics, Inc., 7 Hyde Si, Stamford, CT 06907.
7Much of this section is adapted from "Final Report" (AFOSR-F49620-85-0023) by MA.

IBerding (1988), SRI International, Menlo Park, CA.
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FIGURE CAPTIONS

I1. Distortion of a tetrahedron corresponding to the C44 elastic constant; u is the internal dis-

placement between the anion and cation sublattices.

2. Labels of the interactions between hybrids associated with an adjacent anion-cation pair.

VIA (ViC) is the interaction between two hybrids on the same anion (cation), the "constant

energy" V2 is the interaction between anion and cation hybrids that point toward one

another along the bond direction, V11, is the interaction between an anion hybrid in one

direction and an adjacent cation hybrid pointing in a different direction. The "ionic energy"

V3 is half the difference between cation and anion term values. The lower segment of the

I figure depicts the splitting of the hybrid energy levels by the V2, and V3 interactions.

I 3. A schematic picture of the hybrids, treated as rigid, in a shear distortion leading to CII -

I Cl2 .

4. List of possible crystal stuctures for ordered semiconductor alloys (Wei and Zunger,

I 1989).

I 5. Near neighbor bond lengths (GaAs and InAs in the Gal.xInxAs alloy as a function of com-

position x, measured by EXAFS (Mikkelsen and Boyce, 1982).

6. Cluster populations relative to those in a random alloy xj - ij for clusters with nj = 0, 1, 2,

3, 4 B atoms for a Gal.xlnxAs alloy equilibrated at 600 IL

I 7. Atom configurations during the slip of a dislocation.
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8. Schematic of the dislocation potential as a function of its position.

9. Measured hardness of Ge and several GaAs samples as a function of temperature.
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Table 1. Comparison between calculated expedemltai constants.a

I

Expt FP-LMTOb PP-PWC T B

I SI
a 5.431 5.41 5.45 5.431

i B 9.923 9.9 9.3 9.923

C11 - C12 10.274 10.2 9.8 10.274

C"8.036 8.3 8.5 8.013

C(o1 11.1 11.30

S0.54d 0.51 0.53 0.51

3 523 518 521 572

G a 5.65 
5.59 5.65

5 B 7.653 7.2 7.653

C11 C12 8.189 8.5 8.189

C44 6.816 6.3 6.84

C 7.7 9.46

I 0.44 0.49

3 303 302 342

I
I
I
I
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Table 1. (Continued)

GaAs I
a 5.642 5.55 5.642

B 7.69 7.3 7.69 1
C11 C12 6.63 7.0 6.63 3
C,4 6.04 6.2 5.79

C40)7.5 7.833

0.48 0.50

a 273 268 292 1
I

a. Comparison between calculated and experimental Mce constart a, lastic constants B, Cl - C12 and

C44, Klelman (1962) Internal dstortion parameter C, and the TO optical phonon ce In wave numbers 11cm. 3
Also ided am C() defined In Eq. (13). The FP-LMTO and PP-PW are the ab iftio theories described in

Part I and TB Is the tighl-boning theory In Part Ill, Section 10. AN elastic constants are In units of i

1011 dynes/cm2.

b. Methlessel et al. (1989)

c. Nielsen and Martin (1985a) 3
d. Cousins et al. (1987)

e. AN the experimental lattice constants are those tabulated by Zallen (1982). The experimental elastic I
constants are taken from Table 3, and the phonon lreuencies are from Table 5. 1

I
1
I
I
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Table 3. Expedmental values for cubic semiconductors.a

i

i C1l C12 C 4 4  I a 'K IM |som

Cb 107.640 12.520 57.740 0.0 129.100 84.573 1.00 1.00 1.02

Sib 16.772 6.498 8.036 0.0 49.247 13.951 1.00 1.00 1.13

3 Gqb 13.112 4.923 6.816 0.0 39.438 11.583 1.08 1.08 1.05

AISb b  8.769 4.341 4.076 1.684 33.768 6.653 1.11 1.05 1.08

GaPb 14.390 6.520 7.143 3.815 46.965 10.448 1.12 1.05 1.08

GaAsb 12.110 5.480 6.040 2.827 40.895 9.159 1.12 1.06 1.05

GaShb  9.089 4.143 4.440 1.569 33.123 7.412 1.10 1.06 1.06

3 InPb 10.220 5.760 4.600 3.766 41.095 6.250 1.20 1.07 1.03

InAsb 8.329 4.526 3.959 2.820 33.744 5.531 1.22 1.11 1.00

U InSbb  6.918 3.788 3.132 1.372 29.909 4.951 1.17 1.11 1.05

ZnSc 9.420 5.680 4.360 6.788 37.026 4.571 1.33 1.07 0.95

ZnSc 10.790 7.220 4.120 6.788 45.126 4.341 1.28 1.02 1.01

ZnSc 9.810 6.270 4.483 6.788 39.947 4.300 1.42 1.13 0.90

ZnSc 10.460 6.530 4.630 6.788 41.880 4.828 1.33 1.08 0.95

3 ZnSgb 8.95 5.39 3.984 4.368 34.432 4.716 1.28 1.09 0.98

ZnSec 8.59 5.06 4.06 4.368 34.519 4.673 1.32 1.13 0.95

ZnSec 8.720 5.240 3.920 4.368 35.469 4.603 1.29 1.10 0.98

5 ZnTec 7.130 4.070 3.120 2.566 29.976 4.452 1.18 1.06 1.05

ZnTec 7.220 4.090 3.080 2.566 30.204 4.558 1.14 1.03 1.08

i CdTeb 5.33 3.65 2.04 3.105 27.058 2.455 1.34 1.07 0.98

D
U
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Table 3. (Continued)

CdTe c  6.150 4.300 1.960 3.105 31.546 2.731 1.16 0.94 1.13 3
HgTeb 5.971 4.154 2.259 2.381 30.300 2.542 1.37 1.16 0.96

HgTec  5.63 3.66 2.11 2.381 26.919 2.542 1.37 1.15 0.95 3
I

a. Experimental elastic constants for some cubic semiconductors and the parameter s of Eq. (81) taken

from Martin (1970) with the force onstants a and 0 obtained from Eqs. (82) and (83) and the identity 1
relations IK, IM and IM given by Eqs. (78), (88), and (119), respectively. The elastic constants C are in

units of 1011 dynes/cm2 , and the remainder are in 103dynes/cm. I
b. Data quoted from "1andolt-Bomstein Numerical Data and Functional Relationships in Science and I
Technology," New Series, Vols. 17 and 22.

c. Listed In the review by Mitra and Massa (1982).

I
I
3
I
I

I
I
U
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Table 4. Values for the term values used in the present calculations arnd Mann's (1967) Hartree-Fock

5 values as used by Harison (1980).

I
Element Present Mann

Cu -7.72 -2.96 -7.72 -2.37

S Ag -7.57 -3.54 -7.06 -2.61

Au -9.22 -3.91 -6.98 -2.67

Be -9.32 -5.41 -8.41 -5.79

t Mg -7.62 -2.97 -6.88 -3.84

Zn -9.39 -4.09 -7.96 -4.02

3 Cd -8.99 -4.17 -7.21 -3.99

Hg -10.43 -4.35 -7.10 -3.95

8 -14.00 -8.30 -13.46 -8.43

5 Al -11.78 -5.98 -10.70 -5.71

Ge -13.23 -5.90 -11.55 -5.67

In -12.03 -5.56 -10.14 -5.37

C -19.81 -11.26 -19.37 -11.07

I Si -15.03 -8.15 -14.79 -7.58

3 Ge -16.40 -7.75 -15.15 -7.33

Sn -14.53 -7.03 -13.04 -6.76

5 Pb -15.25 -6.45 -12.48 -6.53

N -26.08 -14.54 -26.22 -13.84

I P -19.62 -10.57 -19.22 -9.54

As -20.02 -9.93 -18.91 -8.98

Sb -17.56 -8.77 -16.02 -8.14
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Table 4. (Continuied)

0 -28.55 -13.561 -34.02 -16.721

s -21.18 -10.39 -24.01 -11.60

Se -21.41 -9.90 -22.86 -10.681

To -19.12 -9.32 -19.12 -9.543

F -36.23 -17.44 -42.78 -19.86

cl -25.81 -13.05 -29.19 -13.783

Br -24.95 -12.01 -27.00 -12.43

1 -21.95 -10.79 -22.34 -10.97U
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SB Table 5. Experimental Properties of Semiconductors.8

!

I d Ebond B C C4 4  0

C 1.540 -3.68 44.227 95.120 57.740 1332

Si 2.352 -2.32 9.923 10.274 8.036 520

Ge 2.450 -1.94 7.653 8.189 6.816 301

AlP 2.367 -2.13 8.600 6.900 6.150 440

SAlAs 2.451 -1.89 7.727 7.160 5.420 361

AISb 2.656 -1.76 5.817 4.428 4.076 366

GaP 2.360 -1.78 9.143 7.780 7.143 367

3 GaAs 2.448 -1.63 7.690 6.630 6.040 269

GaSb 2.640 -1.48 5.792 4.946 4.440 231

3 InP 2.541 -1.74 7.247 4.460 4.600 304

InAs 2.622 -1.55 5.794 3.803 3.959 219

I InSb 2.805 -1.40 4.831 3.130 3.132 185

Zn S 2.342 -1.59 7.637 3.990 4.558 279

ZnSe 2.454 -1.29 6.457 3.560 3.984 213

3 ZnTe 2.637 -1.20 5.090 3.060 3.120 177

CdTe 2.806 -1.10 4.210 1.680 2.040 141

HgTe 2.798 -0.81 4.759 1.817 2.259 116

I
a. Values of bond length d, bond energy Ebond ,bulk modulus B and shear coefficient C - Cll-C 12 used

3• to determine the parameters in Tables 7 through 11. Also Isted are the experimental values of C44 and

the TO optical phonon mode Cw at rto be compared with the calculations. All the elastic constants are in

units of 1011 dynes/cm2 , d in A, Ebond in eV, and o 1 .O in terms of wave numbers in 1/cm.
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Table 5. (Continued)

All bond lengths are deduced from the lattice constants quoted by Zalien (1982). The values of Ebond are3

taken from Harrison (1980), Table 7-3, except for AISb, ZnTe, GdTe, and HgTe, which are deduced from

the Phillps (1973) Table 8.2. The elastic constants are taken from Table 3. and the phonon frequenciesI

are taken from values compiled in "tandolt-Bomnstein Numerical Data and Functional Relationships in

Science and Technology,O New Seode, edited by K.-H. Heliwedge, Vols. 17 and 22.
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Table 6. Comparison of BOM and BS Models' Predictons.'

IEbpnds * BC C44

3BOM BS BOM BS BOM BS BOM BS

C -7.17 -7.08 49.31 47.39 67.15 67.10 44.45 51.78

3Si -2.39 -2.50 4.65 4.18 7.19 8.07 5.10 5.29

Ge -2.03 -2.34 2.89 1.91 4.72 6.58 3.69 3.00

IAlP -2.59 -2.54 3.81 4.21 4.45 4.83 3.45 4.10

AlAs -2.22 -2.20 3.12 3.66 3.85 4.07 2.91 3.50

AISb -1.64 -1.62 1.99 2.47 2.75 3.12 2.11 2.543GaP -2.32 -2.16 3.63 4.40 4.48 5.15 3.69 4.34

GaAs -1.99 -1.85 2.83 3.76 3.75 4.30 3.02 3.66

3GaSb -1.53 -1.43 1.76 2.45 2.83 3.40 2.17 2.65

InP -2.21 -2.06 2.35 2.91 2.69 2.93 2.21 2.63

IInAS -1.89 -1.74 1.93 2.67 2.38 2.52 1.90 2.32

3 nSb -1.43 -1.28 1.28 1.97 1.81 2.17 1.48 1.87

ZnS -1.83 -1.79 3.46 3.74 3.53 3.62 2.71 3.30

5ZnSe -1.52 -1.48 2.67 3.06 2.75 2.67 2.08 2.53

ZnTe -1.15 -1.05 1.82 2.16 1.88 1.87 1.50 1.78

ICdTe -1.06 -0.97 1.24 1.47 1.22 1.14 0.96 1.13

5HgTe -0.72 -0.49 1.23 1.72 1.33 1.31 1.11 1.30

3 a. Corrpafison of the tight-binding theory using the full band structures (BS) and the bond orbital model

(BOM) for bond energies Ebond, buk modul B, and shear coefficients C - C, 1 - C12 anid C44- All

I energies are in eV and elastic constants in 1011 dynes/cn 2.
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Table 7. Full band structure calculation.a U

f n m uo C 4 4  ()

C 1.390 2.840 3.767 21.924 48.393 0.121 1459

Si 1.326 3.040 5.001 6.938 8.013 0.511 572 3
Ge 1.388 3.204 5.278 6.415 6.841 0.487 342

AlP 1.294 3.530 5.598 6.435 5.827 0.516 447 3
ALAs 1.464 3.524 5.430 7.089 5.598 0.459 384

AISb 1.337 3.268 5.668 4.838 3.944 0.564 354 1
GaP 1.395 3.705 5.683 7.285 6.857 0.501 382 3
GaAs 1.397 3.633 5.716 6.530 5.791 0.500 292

GaSb 1.431 3.471 5.717 5.519 4.515 0.536 256 3
InP 1.323 4.240 6.633 5.603 4.260 0.584 304

InAs 1.300 3.997 6.427 4.962 3.564 0.552 220 3
InSb 1.353 3.773 6.399 4.350 3.092 0.602 200 3
Zn S 1.062 3.308 5.996 4.225 3.727 0.632 325

ZnSe 1.134 3.420 5.994 4.260 3.164 0.576 233 1
ZnTe 1.284 3.3096 5.828 4.285 2.813 0.590 205

CdTe 1.171 3.656 6.761 3.092 1.701 0.694 156 1
HgTe 1.173 3.760 7.074 3.080 2.040 0.716 152

a. The results for the parameters f, n, m, and uo obtained from the fitting of the bond energy, bond 5
length, buk modulus, and shear coefficient Cll - C12 of Table 5 using the full band structure calculation.

Also listed are the calculated C44, internal displacement parameter , and the TO optical phonon mode o 3
at r. All the elastic constants are in units of 1011 dynes/cm2, uo is in eV, and a) are wave numbers in

1/cm.

I
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Table 8. Two sets of TB parameters.a

I
I SI

A A C C
s p ap Vsso Vppo Vppx

Chad 0.0 7.20 0.0 7.20 -2.03 2.55 4.55 -1.09

Present 0.0 6.88 0.0 6.88 -2.41 2.59 4.05 -1.15

U0 Ul U2 C C44 C(O) (0

3 Chad 7.29 -9.98 23.90 10.66 7.89 11.38 0.49 620

Present 6.93 -9.70 23.42 10.27 7.83 11.39 0.51 592I
GaAs

E A A C C AC V CA
S p a p Va Vspa spa VppG Vppx

I Chadi 0.0 9.64 5.12 11.56 -1.70 2.40 1.90 3.44 -0.89

3 Present 0.0 10.09 6.79 14.12 -2.34 2.52 2.52 3.94 -1.12

O uUl U2 C C4 4  C44 C 0)

Chad 5.12 -7.12 18.22 6.36 5.60 8.77 0.54 339

I Present 6.53 -8.39 19.90 6.63 5.70 8.53 0.54 322

I
3 a. Comparison between the two different sets of TB parameters described in the text, the resultant

expression coefficients uo, ul, and U2 of the repulsive pair energy u, and the predicted elastic constants,

I Kleinmann Internal displacement parameters C, and phonon frequency w from Chadi fining scheme.
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Table 9. BOM(1) calculations~a

1
f n m Uo C4 4  ()

C 1.440 2.896 3.809 22.345 61.098 0.142 2103 1
Si 1.356 3.208 5.166 7.023 9.729 0.447 695 3
Ge 1.395 3.666 5.854 6.383 8.240 0.506 416

AlP 1.047 3.334 5.842 4.418 6.627 0.460 571 3
AlAs 1.264 3.530 5.685 5.538 6.668 0.431 491

AlSb 1.179 3.170 5.831 3.818 4.482 0.511 411 U
GaP 1.154 3.439 5.744 5.239 7.500 0.453 496 3
GaAs 1.179 3.337 5.647 4.863 6.340 0.456 358

GaSb 1.274 3.354 5.797 4.456 4.950 0.500 302 3
InP 0.999 3.579 6.490 3.413 4.558 0.522 388

InAs 0.995 3.167 5.960 3.081 3.787 0.496 260 3
inSb 1.126 3.228 6.105 3.091 3.267 0.543 224

Zn S 0.692 2.750 7.262 1.642 4.312 0.580 401 1
ZnSe 0.750 2.823 6.839 1.821 3.685 0.544 287 3
ZnTe 0.888 2.715 6.484 1.987 3.156 0.531 248

CdTe 0.734 2.720 8.394 1.018 1.949 0.660 189 3
HgTe 0.732 2.202 8.810 0.842 2.140 0.677 177

a. The results for the parameters f, n, m, and uo obtained from the fitting of the bond energy, bond 5
length, bulk modulus and shear coefficient C1 1-C12 of Table 5 using the BOM(1) described in the text.

Also listed are the calculated C4, internal displacement parameter C, and the TO optical phonon mode w 3
at r. Al the elastic constants are in units of 101 1dynes/cm2, uo is in eV, and c) is given in terms of wave

number in 1/cm. I

I
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Table 10. BOM(2) Cacu.ais~a

I

I f n m Uo C4 4  (OTO

C 1.440 2.896 3.809 22.345 55.161 0.319 1672

Si 1.356 3.208 5.166 7.023 7.520 0.652 597

Ge 1.395 3.666 5.854 6.383 6.106 0.720 358

AiP 1.283 3.440 5.493 6.171 5.094 0.677 511

AlAs 1.472 3.543 5.419 6.979 5.103 0.640 440

3 ASb 1.342 3.249 5.580 4.771 3.256 0.706 373

GaP 1.371 3.540 5.490 6.901 5.916 0.688 428

GaAs 1.387 3.455 5.452 6.306 4.864 0.681 317

GaSb 1.414 3.398 5.593 5.305 3.681 0.717 264

I InP 1.307 3.846 6.115 5.339 3.446 0.744 354

3 InAs 1.298 3.528 5.731 4.834 2.806 0.706 243

InSb 1.342 3.464 5.910 4.204 2.351 0.747 207

3 Zn S 1.062 3.102 5.728 4.075 3.016 0.726 373

ZnSe 1.141 3.150 5.587 4.181 2.577 0.688 271

I ZnTe 1.283 3.067 5.498 4.140 2.270 0.704 231

CdTe 1.178 3.271 6.216 3.011 1.319 0.764 177

HgTe 1.169 3.046 6.116 2.916 1.457 0.793 162

I
a. The results for the parameters f, n, m, and 00 obtained from the filing of the bond energy, bond

I length, bulk modulus and shear coefficient C1I-C 12 of Table 5 using the BOM(2) described in the text.

Also isted are the calculated C", internal displacement parameter C, and the TO optical phonon mode co

I atr. Al the elastic constants are In units of 101ldynescm2 , uo Is in eV, and ois wave number in 1/cm.
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Table 11. BOM(3) calculations~a I

f n m Uo C4 4  co I
C 1.336 2.901 3.872 20.814 47.691 0.135 1531 3
Si 1.262 3.251 5.346 6.484 7.472 0.580 562

Ge 1.302 3.886 6.264 5.942 6.171 0.658 333 3
AlP 1.193 3.43 5.577 5.722 4.936 0.541 452

AlAs 1.369 3.559 5.507 6.498 4.812 0.490 387 1
AISb 1.249 3.253 5.669 4.402 3.248 0.619 343 3
GaP 1.276 3.550 5.575 6.422 5.738 0.542 373

GaAs 1.290 3.445 5.511 5.855 4.724 0.549 281 3
GaSb 1.318 3.415 5.704 4.923 3.670 0.621 239

InP 1.210 3.812 6.153 4.929 3.398 0.604 304 3
InAs 1.199 3.456 5.724 4.442 2.755 0.579 216

InSb 1.245 3.411 5.943 3.871 2.367 0.657 188

Zn S 0.968 3.062 5.848 3.618 3.120 0.630 343 3
ZnSe 1.040 3.097 5.671 3.727 2.611 0.580 247

ZnTe 1.178 3.019 5.573 3.371 2.301 0.601 212 i
CdTe 1.065 3.198 6.368 2.621 1.403 0.690 165

HgTe 1.059 2.937 6.262 2.523 1.563 0.730 154 1
I

a. The results for the parameters f, n, m, and uo obtained from the fitting of the bond energy, bond

length, bulk modulus and shear coefficient C1I-C12 of Table 5 using the BOM(3) described in the text. 3
Also listed are the calculated C", internal displacement parameter C, and the TO optical phonon mode (o

at r. AN the eastic constants are in units of 1011dynescrl 2, uo is in eV, and o is wave number in 1/cm.

I
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Table 12. Ordered alloys: TB elati consan calclationIs.'

U 13/B x 100

Alloy Bch B3Ca BCP B Ch Ca Cp

AlGaAs 7.895 7.693 7.689 7.909 -0.18 -0.20 -0.25

AIGaP 8.858 8.858 8.854 8.872 -0.15 -0.15 -0.20

3GalnSb 5.226 5.202 5.156 5.312 -1.61 -2.07 -2.92

AlInAs 6.705 6.691 6.661 6.761 -0.83 -1.03 -1.48

kwlGaAS 6.610 6.579 6.508 6.742 -1.96 -2.42 -3.47

InAIP 7.676 7.860 7.774 7.924 -0.61 -0.08 -1.88

GaWn 8.007 8.035 8.878 8.195 -1.44 -1.95 -3.87

3GaAsP 8.328 8.291 8.294 8.417 -1.05 -1.50 -1.46

GaAsSb 6.314 6.198 6.157 6.741 -6.34 -8.05 -8.66

3GaM~ 6.584 6.297 6.188 7.468 -11.84 -15.68 -17.14

HgCdTe 4.470 4.472 4.471 4.485 -0.33 -0.28 -0.31

HgZnTe 4.890 4.887 4.632 4.925 -0.71 -0.76 -5.93

CdZnTe 4.611 4.604 4.338 4.650 -0.85 -1.00 -6.72

Ia. Buk, Iou of ordered aloys calculated using the full TB band-structure method descibed in Part 111,

5 Section 10. The three structures are chachopyrite (Ch), CuAul (Ca) and CuPt(Cp) types. B is the average

value of the constituent compounds, and AB = B - B
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Table 13. Oftlered alloys: Bulk modul.a

GaAs GaSb Ga2ASSb Ga4AS3Sb Ga 4AsSb 3  U
1atructure zb zb CA CHI CP LU FA LU FA3

B 7.46 5.18 6.10 5.92 5.96 6.52 6.58 5.40 5.31

ABA6 x 100 -3.5 -6.3 -5.7 -5.4 -4.5 -6.1 -7.7

a. Cakculted buk modkA for GaAs, GaSb, and GaAsSb ordered ays by Ferreira et aw. (1989), and theU

correspordng percentage clevAafon fraon the concenratmion weiged average. The structres are3

zlncblede (ib), CUAI(CA), chahoprie (CH), CuPt(CP), Luzonite (LU), and Famatinte (FA).
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Table 14. Buk modufi of ordered binary alloys AB of the diamond semi~conductors A and B from theories

and experiment.

sic PP-PW& experiment

B(C) 50.3 44.23

IB(Si) 9.53 9.92

B(SiC) 23.4 22.4

ABiB(% -21 -17

SiGe PP*PWO pp..pWb ASAC FP-LMTOC

B(51) 9.53 9.8 8.80 9.58

B(Ge) 7.75 7.7 6.25 7.05

IB(SlGe) 8.73 8.7 7.38 8.31

ASAB (%) 1 0 2 0

3 a. Martins and Zunger (1986)

b. Oteish and Resta (1988)

I ~c. van Schifgaarde (1990)
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Table 15. Measured elastic constants in 1011 dynes/cn 2 of SiGe alloys by Bublik et al. (1974)..

alloy C11 C 1 2  C 4 4  I
Sio.2eGeo.72 16.1 ± 0.8 8.35 ± 0.8 8.55 + 0.4

Sio.54GEo.46 17.0 ± 0.8

SiO.64GeO.36 17.1 ± 0.8

I
I
U
I
I
I
I

I
I
I
I
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Table 16. Calculated Peieds stress and hardness for various zincblende semiconductors, with

experimental hardness values for comparison.a

I
Ub 1p HP Hint HP * Hint  Hex p

i C 11.35 23,300 1940 9244 11,184 1

SI 5.95 3430 286 1098 1384 1370

Ge 6.67 3440 286 893 1179 1000

Sn 5.66 1930 161 - - -

I AlP 6.04 3410 284 - - -

GaP 6.15 3500 292 903 1195 940

InP 5.78 2640 220 548 768 520I
AlAs 5.90 3000 250 - - 505

3 GaAs 6.03 3000 256 750 1006 580

InAs 5.64 2340 195 469 664 430

3 AISb 5.08 2840 237 524 761 400

GaSb 5.36 2180 182 553 735 450

3 InSb 4.92 1670 139 365 504 230

I ZnS 5.14 3000 250 515 765 -

CdS 4.77 2750 229 288 517

HgS 5.68 2590 216 - - -

ZnSe 4.92 2500 209 462 671 137

CdSe 4.59 1890 157 254 411 -

I
I D-121



Table 16. (Continued)

HgSe 4.523 1840 154 232 386-

ZnTe 4.42 1720 143 374 517 821

CdTe 4.01 1350 113 222 335 60

HgTe 3.99 1360 113 230 343 25

a. The U values ar In eV, and the others in kgftm 2.
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ELECTRONIC STRUCTURES OF HgTe AND CdTe SURFACES AND HgTe/CdTe INTERFACES
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Electronic structures of HgTe and CITe surfaces and HgTe/CdTe interfaces
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A Green's-function method has been used to study the surface and interface electronic structures
of the II-VI compounds HgTe and CdTe. Localized surface and resonance states near the cation-
terminated (100) surface of CdTe and the anion-terminated surface of HgTe have been found for the
ideal surfaces. The energies and strengths of these surface states are altered by surface perturba-
tions. The bulk states near the surface are drastically modified by the creation of the surface, but

the band gaps remain unchanged. Numerical evaluation of the local densities of states at the r and
J points shows that, at the (100) interface of HgTe/CdTe, the previously observed surface states are
no longer present. However, in the interface region, bulk states of one material penetrate some dis-
tance into the other material.I

1. INTRODUCTION ment. to- 14 For the same reasons we apply this method in
this work to investigate surface and interface electronic

One of the earliest formulations used in the investiga- structures of the pure II-VI compounds CdTe and
tion of surfaces and interfaces was based on the linear - HgTe. 5 1' 6

combination of atomic orbitals (LCAO) method. Despite the intense interest in Hgn_..Cd1 Te over the
Goodwin' first applied the LCAO model to study the ex- past three decades due to its application in the prepara-
istence conditions for localized Tamm 2 states in a crystal. tion of infrared detectors, there have been relatively few
He found that these states occur when the diagonal experimental and theoretical investigations of the surface
Coulomb integrals and the off-diagonal resonance in- and interface properties of this system.n ' - n9 Since the
tegrals of the surface are allowed to be different from KS method is well suited for the study of the surface
those of the bulk, for systems of single-level or of sp- properties of a system described by a tight-binding Ham-
hybridized atoms. At the same time, Shockley 3 investi- iltonian, we use here a Hamiltonian closely related to that
gated a periodic potential that is terminated at its max- obtained by Hass, Ehrenreich, and Velicky (HEV) (Ref.
imum and found that, under the condition that the bulk 20) for HgTe and CdTe in the empirical tight-binding ap-
bands crossed, surface states exist in the middle of the proximation (ETBA) based on the LCAO interpolation
band gap. Shockley states, as they have come to be scheme of Slater and Koster. 2

1 In the ETBA the predict-

known, come into being when the perturbations at the ed band structures of the pure compounds HgTe and
surface are small in comparison to the widths of the al- CdTe are matched to experimentally determined band en-
lowed energy bands. Koutecky4 and otherss generalized ergies.22

Goodwin's model to study the energy and existence con- In Sec. II, we introduce the formalism of KS for the

ditions of surface states. Electronic interface states were description of the surface properties of II-VI materials
studied within the LCAO method by Davison and along with the extension of the technique to the problem
Cheng. 6 An exact tight-binding solution for the surface of interfaces of these materials. Section III contains the
and interface problems of a one-dimensional semiconduc- results of our calculation and a discussion.
tor was obtained by Dy and co-workers. 7's

Since these early investigations, many other papers 11 FORMALISM
have appeared in the literature for the study of surface
and interface properties of solids. Kalkstein and Soven In the formalism of Kalkstein and Soven, 9 a pair of

(KS) (Ref. 9) introduced a Green's-function (GF) formal- semi-infinite crystals is formed by introducir: a cleavage
ism to study the surface electronic properties of semi- plane into an infinite crystal in one crystallographicI infinite crystals. This is a relatively simple but powerful direction. A GF describing the electronic properties of
method by which both the bulk and surface properties of the semi-infinite systems is derived from the GF of the
a semi-infinite crystal can be studied. The method can be infinite crystal and a scattering potential representing the
generalized in a straightforward manner to study the cleavage. When combined with a tight-binding formal-I electronic properties of an interface formed by joining ism in which nearest- and next-nearest-neighbor interac-
two semi-infinite crystals. Because of its simplicity and tions are included, the scattering potential is relatively
power the method of KS was widely applied in many cal- easy to calculate making application to realistic systems
culations during the decade following its develop- simple. The Hamiltonian is constructed, following HEV,
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for HTe and CdTe using sp 3 basis states and including G(n,n')= I I (aavnklGla'o'v'n'k,) I
spin. 2 The parameters used are those of Slater and aa a'o'V
Koster 2

1 as determined by HEV (Ref. 20) except that, in X×aovnk,)(a'o'v'n'k,1 (3)
our case, the values of Esx (110) and Esx (Ol) are inter- ' (
changed. This produces band structures1'5 16 that are which is the GF submatrix between layer n and layer n'.
qualitatively similar to those of Bryant which offer im- From the site-diagonal GF, G(n,n), we may calculate
proved conduction-band mass.' 8 We calculate the GF, G the local density of states
associated with this Hamiltonian by using the defining p.,,(E)= -(/1r)ImTr,,G(nn) Iequation p,() /' mTG(~) 4

G =(E +iX-H) - ' (1) where Tr, indicates that the trace is to be carried out
only for the species (layer) given by v.

where H is the Hamiltonian of the infinite unperturbed The GF of the semi-infinite crystal, G' is found I
system. It is understood that G is to be calculated in the through the application of the Dyson equation,
limit as the positive imaginary part X approaches zero.
These calculations are performed in k space, utilizing ful- G'= G + G VG'. (5)
ly the periodicity of the crystal. Besides calculating the matrix elements of the infinite I

For the surface (interface) calculations, since we no crystal GF, G, we must also find the matrix elements of
longer have translational periodicity along the direction the scattering potential, V, introduced by the creation of
perpendicular to the surface (interface), we cannot use an the surface. We label the double layers in the crystal
ordinary k-space representation. Kalkstein and Soven9  with integers such that the cleavage plane passes betweenassume periodic structure parallel to the surface and use the double layers - I and 0, and the semi-infinite crystal
a representation consisting of states which are localized of interest starts at the zeroth layer and has layer indices
on planes of atomic sites parallel to the surface and n >0. Because G'(n,n') is zero for all n and n' less than
represented by the index n, and of Bloch states reflecting zero, the only matrix elements of the scattering potentialthe periodic symmetry within the planes which ,,re that enter into Eq. (5) in the present model are V( - 1,0)
represented by the index kV, This is the mixed or Bloch- and V(0, - I) which express the severing of the interac-
Wannier representation. We assume the same type of tions across the cleavage plane. We may also include a
symmetry in the interface system. The Hamiltonian and diagonal term V(0,0), if we wish, to allow for surface
the GF of the bulk crystal as well as the Hamiltonians of perturbations such as relaxation and environmental
the semi-infinite and interface systems must all be ex- shifts, into our calculation. These scattering potentials
pressed in this mixed representation. The formulas for have explicit dependence on k, and the pair of indices as-
the semi-infinite system were derived by KS and are the sociated with V refer to the double layers involved in the
same for us if we reinterpret the algebraic expressions as interaction. In terms of the Hamiltonian matrices, the
matrix equations for the sp -spin basis states. Note that scattering potential matrix is given by
in this paper we examine the surfaces and interfaces per-
pendicular to the [100] direction for pure CdTe and V=H'-H , (6)
HgTe samples. For these compounds, this structure cor-
responds to an arrangement in which the anions and cat- where H' is the Hamiltonian of the semi-infinite crystal.
ions are placed in alternating planes parallel to the sur- The scattering potential matrix elements describing the
face or interface. For notational simplicity, in the follow- breaking of interactions across the cleavage plane are9  I
ing, a cation-anion pair of planes is given a single layer
index n, with the species index v left to distinguish be- V(0, -1 )=-H(0, - 1),
tween the two species (layers).' 5" 6

For basis states of the infinite system, KS used statesanalogous to Iaavk), where a s,x,y,z indicates theaaoicgorbita the spin, whiepresenty, cas oe where, as before, the k, index has been suppressed foratomic orbital, the spin ( I, 111 is represented by cr, v =a or copcns fntto.Temti•lmn (,)i
c stands for anions or caions, respectively, and k is the compactness of notation. The matrix element V(0,0) is
wave vector. Following KS, we write the Bloch-Wannier introduced parametrically to account for the shifts in the
states for our system as atomic levels and hopping interaction at the surface lay-

r. - ik i, Explicitly, a general matrix of G' is found from Eq. (5)11aavnkd)=K Y ,e -'alaavk ) ,(2) as
k
i

G'(n,n')=G(n,n')
where R,, is the position of the ion sublattice represented +[G(n,0)V(0,0) I
by v on the plane labeled by n, and k, and k, are the com-
ponents of k, parallel and perpendicular to the surface +G(n,-l)V(-l,0)]G'(0,n') , (8)
(interface) plane, respectively. This basis set reflects the
symmetry of the semi-infinite system and is therefore well with n and n'2 _0. To solve this equation, it is first neces- I
suited for our purpose. In the following we suppress the sary to solve for G'(O,n') which is done by setting n equal
k, index for compactness of notation, as in to zero in Eq. (8) and solving for the matrix element

I
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G'(O,n )=[ 1-G(,0)V(O,0) in k space and interpolating for the intermediate values.2 4

Accuracy is ensured through sampling the functions at a
-G(O,-I)V(-l,0)]-1G(O,n') (9) sufficient number of points. All calculations are per-

To find the general matrix element of G' we need only to formed with a small positive imaginary component in the

substitute Eq. (9) into Eq. (8). To include environmental energy and the final results at the real energy axis are

effects on the surface atoms, we introduce a parameter 6 evaluated through the use of the analytic continuation

which measures a shift of the surface layer on-site ener- procedure of Hass, Velicky, and Ehrenreich.2

gies. Also, we introduce a parameter d which represents One quite useful feature of our calculation is that the

the strength of the interactions between the first two evaluation of the GF's of the semi-infinite crystal and the

planes of atoms in the semi-infinite crystal relative to the interface requires much less computational effort than the

same interactions in the bulk. The parameters 6 and d evaluation of the infinite crystal GF.16 As a result of this

are included in the matrices V(0,0) and V( - 1, - 1).1" speed, we are able to consider several values of the envi-

This model was first extended to the interface between ronmental shift and surface-nearest-neighbor interac-

two model semi-infinite one-band crystals by Yaniv. 13  tion. In order to observe the effects of the variation of
We further extend the technique to real crystals using the these parameters on the localized states we examine the
sp 3 with spin basis states. The interface is formed be- local densities of states (LDOS) at various values of the

tween crystal A (n ' - 1) and crystal B (n > 0). In joining parameters for a few CdTe and HgTe surfaces and inter-
the crystals, the interactions between the Te and Cd faces. These LDOS are evaluated at fixed values of k. so
planes, as well as those between the Te planes, across the that we may find the positions of the localized state bands
interface, are taken to be the same as in the bulk. Since in the surface Brillouin zone. For details of the evalua-
there are no data available for the hopping integrals be- tion of the matrix elements of the infinite crystal GF and
tween Hg and Cd planes we assume them to be equal to those of the scattering potentials required for our calcula-
the average of the interactions between bulk-crystal (100) tion, one is referred to Refs. 15 and 16.
Cd planes in CdTe and interactions between bulk-crystal
(100) Hg planes in HgTe. The interactions between the

A and B sides of the interface are included in the scatter-
ing potentials V'0,- 1) and V'( - 1,0). To our Green's
function we add subscripts a and 6 which take on the
values A and B to indicate the side of the interface in-
volved in the calculations. Once again solving the Dyson
equation for the interface GF, g (Ref. 16), s I-o~ I nI

=G'+ G'V'g

we find the interface GF matrix elements as .>. d..

6. G I.

g. ( ,n , oM ') J . . . "; <,

+G',m, il)V'(-l,l0)g8 BO, n)baA , (10) -0.2s 0ls 1.7
where

gAA(- ,n)[ 1 -G ( 1, - I )V( - l,0)G;(0,0)

XV(O,-n)r'G, (-I,h) , (Ila)

g8 (On)=[l-I O'(0,0)V(0,- lI)G(-l,i- 1)

XgV(-1,O]-y I-(O,n) , (lib) .

I 7IsgARl-l,n)=G il-i,-lVl-I,OlgBlO, n), ( Id) i,-,,.,IIS--. ' .

and 6. is the Kronecker delta. We hzve assumed a per- . 6-0ev d. I (ukuncaed)

fect match in the lattice spacing across the interface
which is nearly true for HgTe and CdTe with q difference 0 , • , , ,,---_ (b)

in spacing of only 0.3%. Energy 0s )
In the evaluation of the GF of the bulk system a great

deal of numerical integration is required. The integrals FIG. I. Dependence of the LDOS on the parameters 8 and d
are evaluated through the use of a Lagrange interpola'ion as compared to the infinite crystal for (a) the cation surface lay-
scheme in which the time to calculate the band structures er and (b) the first interior anion layer at r (k, =0) for CdTe
is reduced by evaluating them exactly at only a few points cation-terminated (100) surface.
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III. RESULTS AND DISCUSSION not there is a surface perturbation. The ideal cation- I
truncated (100) surface of CdTe has a surface state at r

Once the matrix elements of the infinite crystal GF and with energy lying at E =0.6 eV above the top of the
the relevant scattering potentials are specified, one can valence band. We also see that the bulk densities of
calculate the matrix elements of the GF of the semi- states are modified as a result of the introduction of a sur-
infinite sample and that of the sample with the interface face but the band gap of CdTe remains unchanged. We
using Eqs. (8) and (10), respectively. One can further cal- note that the position of the bound state is sensitive to
culate the LDOS at various layers using an equation of
the type of Eq. (4). In this paper we present the LDOS
calculated at the symmetry points r and J and at ener-

gies near the valence- and the conduction-band edges of
the sample where the principal band gaps occur.

In Figs. I and 2 we plot the surface LDOS at the r I
point for various combinations of the environmental shift
parameter 8 and the geometric shift parameter (relaxa-
tion parameter) d for CdTe cation-terminated and HgTe
anion-terminated crystals, respectively. We begin by not-
ing, in Fig. 1, the existence of a localized surface state
(bound state) which is the sharp structure that appears in
the LDOS within the band gap of the CdTe, whether or 6.01eV , .

25 ~~30 -jcld

25

~~~~~~~2 2. niie rsa a
2.5 

E
1
0

> O f (a- •). .
S6.0.1eV d-1 -1 0 1 2 3

(o Energy (9V)

8-0eV d.0.9
. 1.0

0.5 =07eV -d (bulk truncated)

0.0 , * , infinte crystal ta)

0.0 0.5 1.0 1.5 2.0
Energy (eV) I

8-0.1ev d.1

30 -30
25 8.0eV d.0.9

12o 6=0.eV €=l 20

0e 15 8-0eV d-I (biulktruncated)

10 10

68.0eOV d- I (buAtruncated)

0~ifnt 0.5ta (b) 0.(nb)lcyla
00.0 ' 0.5 1.0 1.5 2.0 0 2 3

Inergy (eV) Energy (eV)

FIG. 2. Dependence of the LDOS on the parameters 6 and d FIG. 3. Dependence of the LDOS on the parameters 6 and d
as compared to the infinite crystal for (a) the anion surface layer as compared to the infinite crystal for (a) the anion surface layer
and (b) the first interior cation layer at Ir (kh=O) for HgTe and (b) the first interior cation layer at J 1k, =r/a V2, V'2)] for
cation-terminated (100) surface. HgTe anion-terminated (100) surface.
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I variations in both d and 6. In Fig. 2, we notice that the the introduction of the surface and that the band gaps are
surface has again introduced a marked change in the not altered by the surface.

LDOS of HgTe. A resonance state appears in the form of Our calculation of the layer dependence of the surface
spike inside the conduction band of semimetal HgTe. states shows that these states become progressively less

The contribution of this resonance to the LDOS is significant as we examine deeper inside the crystal indi-
strongest for anion layers indicating that anion states are cating these states are indeed localized bound states. The
the most likely constituents of this state. Similar surface bulk LDOS in the deeper layers, on the other hand, start
states have been calculated by Bryant' s for the special resembling the infinite crystal LDOS.
case where no surface perturbations exist. As mentioned before, the interface calculations have

The surface states calculated for the HgTe at the J been performed assuming no lattice mismatch in the crys-
point where there exists a gap are shown in Fig. 3. These tal structures of the HgTe and CdTe compounds, thus
states exhibit the same dependence on the interactions neglecting all strains that may be present at the interface.
that was seen at the r point. Here instead of a single The parameters chosen for our calculation also do not al-
peak we see a pair of bound states just above the valence low for valence-band offset. With these assumptions,
band within the band gap. Also above the conduction dramatic effects are seen at the interface of HgTe and
band there is a bound state that was not observed for the CdTe as shown in Figs. 4 and 5, where the LDOS in the
r point. Anions contribute more strongly to the bound CdTe side of the interface are presented at r and J
states inside the band gap while the cation contribution is points, respectively. The most obvious effect is the lack
stronger to the bound state above the conduction band. of localized states that were previously seen at the free
Also notice that the bulk states are strongly modified by surfaces of these materials. Instead, we find that, close to

the interface, the bulk states of HgTe that lie in the re-
gion between 0 and 1.6 eV appear in the band gap ofU

2.0

20 -20I 1.5

e 10interface cation layer

1E a o layer t blk trunCal: surface (a)

.0 0 1 "02

0 .0ly 3ran e

4
bul truncated surface (b)

surface cation layer . 5 20 ( 2 3

0.0 0.S 1.0 1.5 2.0 -
Energy (V) Energy (V)

FIG. 4. Comparison of the surface LDOS of the cation- FIG. 5. Compartson of the surface LDOS of the cation-Iterminated (100) surface of CdTe with the LDOS plotted (a) at terminated (100) surface of CdTe with the LDOS plotted (a) at
successive cation layers and (b) anion layers for the CdTe side of first cation layer at the interface and (b) the first interior anion

the (100) interface CdTe/HgTe at r. layer for the CdTe side of the (100) interface CdTe/HgTe atJ.
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CdTe at the r point. These states in the CdTe gap be- without having to deal with the artificial super-cell ap-

come less significan, at layers further from the interface proximation. Our calculation shows that drastic changes

while at the same time the LDOS in the energy ranges of in the LDOS can occur because of creation of surfaces

the conduciion and valence bands of CdTe increase in and interfaces. Localized surface or resonance states ap-
strength. Thus we have a narrowing of the gap of CdTe pear above the top of the valence band, and the effects of I
in a limited region near the interface which allows con- the surface on the LDOS persist at several layers inside
duction electrons to penetrate into the CdTe from the the bulk. At the interface, there are no localized states
HgTe over a short distance. In Fig. 5, we explicitly see but the bulklike states related to one material penetrate
how the gap at the CdTe layers is reduced with respect to into several layers inside the other material resulting in I
pure CdTe at J. Calculation of the LDOS in the HgTe narrowing of band gaps close to the interface for the wide
side of the interface shows similar effects. band-gap material. At present there are no systematic

The above results describe how the LDOS change from experimental data available for comparison with our con-
the bulk to the surface and then from the surface to the clusions.
interface. While the bulk and the interface results can be Finally, even though we have not included all aspects
considered realistic, the surface results may not be, since necessary for a complete description of the surfaces and
the surface reconstruction has not been included in the interfaces, our work can be considered to be the first step
calculation. Recent experiments17 .26- 2

8 and a structural toward the understanding of the surface and interface
theory29 indicate that the surfaces of CdTe and some oth- electronic structures of the Il-VI compounds. To our
er 1l-VI compounds undergo reconstructions similar to knowledge, the results presented here are new for the in-
those on the surfaces of III-V compounds. However, terface and more general than any previous surf'ace calcu-
similir measurements are yet to be made on HgTe sur- lations on the I-VI compounds. Since the method is
faces and CdTe/HgTe interfaces. Our calculations indi- flexible, it will be possible to incorporate realistic
cate that changes in the electronic structure in the form structural models dealing with the surface reconstruc-
of environmental shifts at the surface lead to only minor tions, when they become available, to calculate more real-
changes in the localized surface and the bulk LDOS. istic electronic properties of such surfaces and interfaces.
Whether a surface reconstruction will result in substan-
tial modification of these states is yet to be determined. ACKNOWLEDGMENTS
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IIV ALLOY STATISTICS AND PHASE DIAGRAMS

i 4.1 Mixing Free Energy. Miscibility Gap and Order-Disorder
Transitions

Consider an ideal pseudobinary semiconductor alloy Al-xBxC in the
zincblende structure in which the alloy atoms A and B randomly occupy
their fcc sublattice sites while the C atoms occupy the other fcc
sublattice. If the C atoms are treated as spectators, then this
pseudobinary alloy behaves like a fcc binary alloy Al-xBx in the
statistical mechanics formalism. However, as evidenced by the EXAFS
experiment discussed in Chapter I, the atomic positions in a real3semiconductor alloy are distorted slightly from the zincblende sites.
Because the bonding is covalent the C atoms mediate the energies and in

I that sense affect the statistics. It will become clear later that the
distribution of A and B atoms in an alloy is never completely random.
This has important consequences on many physical properties. For
example, a knowledge of structural energies and associated atomic
distributions is essential to accurate calculations of phase diagrams.

II In this chapter we will be dealing with equilibrium statistics and phase
diagrams. The equilibrium state at a fixed temperature T and pressure P

I is the one with the minimum Gibbs free energy. The equilibrium state may
contain only one phase, for example, an ordered alloy in a given crystal

jstructure, or a disordered solution with a uniform concentration. It may
also contain several phases, for example, an ordered alloy plus a
disordered one, or two disordered phases with different concentrations.
Gibbs' phase rule (e.g., Landau and Lifshitz, 1986) states that a solution
containing n species can have up to a maximum of n + 2 phases coexisting
in equilibrium. Thus to determine the equilibrium state at constant
temperature and pressura of an alloy requires knowledge of the Gibbs free

* energies of all possible phases.

Under normal pressures of the order of one atmosphere, the difference
t between the Gibbs free energy G and the Helmholtz free energy F, G-F -

PV, is insignificant for a solid or liquid. Thus, it is sufficient to use F for
3 most cases. For a disordered zincblende pseudobinary alloy AI-xBxC, it is

F
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a
convenient to define a mixing free energy AF as a function of x and T at a i
fixed pressure i

AF(x) = F(x,T) - (1 - X)FAc(T) - xFBc(T), (4.1.1)

where F, FAC and FBC are respectively the Helmholtz free energies for the
alloy, pure AC and pure BC compounds containing the same number of C I
atoms. AF can be written as e

AF = AE - TAS, (4.1.2)

where AE is the mixing energy and AS is the mixing entropy defined
similarly to AF. Again, because the magnitude of A(PV) is small, AE and
the mixing enthalpy AH are used interchangeably. If AE > 0 at T - 0, which
turns out to be the case for most semiconductor alloys, then AF as a I
function of x at different fixed T will have the schematic shapes of the
curves shown in Fig. 4.1.1a. The curve labelled T3 > Tc represents a typical I
high temperature curve. It tells us that disordered alloys with any
concentration fraction x are stable at this temperature. However, the
low-temperature curve labelled T2 < Tc indicates there is a miscibility
gap for x within the interval xl < x < x2. Here xl and x2 are the points at
which the common tangent line touches the AF curve. This curve means 3
that the alloy is thermally stable against decomposition for x < xl and

x I x2 but not inside the interval xl x < x2. For x inside the gap, the alloy
tends to decompose into two alloys with concentrations xl and x2 with
proportions PI and P2 governed by the lever rule, P1= (X2-X)/(X2-Xl) and i
P2 - (x - Xl)/(x2- xl), because this decomposition minimizes the free

energy. There are two other special concentration values x, and x2 called
the spinodal points. These occur at inflection points of AF at each T < Tc,

i.e., a2 ,iF/ax2 =0 at these x values. These values separate x space into 5
unstable and metastable regions. For x, < x < x' or x2 < x < x2 , the alloy is

metastable against local decomposition, because the AF value for any x in
these regions is lower than the lever rule average value of AF when the
alloy begins to separate into domains with compositions in the I
neighborhood of x. This causes a barrier to the alloy decomposition into

its equilibrium state. An alloy with x1 < x2 is inherently unstable

because there is no decomposition barrier. We can construct the binodal

I
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IFigure 4.1.1 (a) Schematic picture of mixing free energies AF as a
function of composition x of a pseudobinary alloy Al-xBxC with aIpositive mixing enthalpy at three temperatures T1 - 0, T2 < Tc and T3 >
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I

and spinodal curves by continuously varying the temperatures and tracing I
the values of these gaps, as shown in Fig. 4.1.1b. These gap values become
closer to each other as the temperature increases until a critical

temperature Tc is reached, where all the values Xl, X2, x, and x2 merge
into one value. Beyond Tc, the disordered phase is stable for all alloy
concentrations.

If AE < 0 at T - 0, then there is a tendency to form a long-range ordered
alloy. Whether the alloy is ordered or disordered depends upon the
temperature. Figure 4.1.2 schematically compares the mixing free energyI
of the disordered alloy against that of an ordered compound ABC2. With a
negative mixing enthalpy, the energy of the ordered system AEo is lower
than the disordered alloy, i.e., AEo < AE at T = 0, so that the ordered state
is the equilibrium state. As temperature increases, AF of the disordered

alloy becomes more negative, mainly because the entropy term in Eq.
(4.1.2) decreases roughly linearly in T. The system remains in the ordered
phase until a transition temperature To is reached when AF is equal to I
AEo. The disordered alloy then becomes the stable state for temperatures
greater than To. !

4.2 Analytical Models I
Since pseudobinary alloys Al-xBxC statistically are similar to binary alloys
Ai-xBx, the binary results will be used whenever they do not cause any I
confusion. The statistical theory for binary solid solutions is
mathematically equivalent to the three-dimensional Ising model in
magnetism. Even for the simplest case with nearest-pair interactions, an
analytical solution of this model remains one of the most challenging
problems in theoretical physics. However, systematic computational
methods are available, as will be discussed later. This section briefly

reviews several analytical models, which are useful for illustrating the
basic concepts and for semi-empirical phase diagram evaluation. This
review will focus on disordered alloys with positive mixing energies, I
because this is the most relevant case for most bulk semiconductors.
However, results related to ordered cases will also be discussed. More 3
detailed examples of spontaneous ordering will be considered in Chapter 7.

1
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Ideal-solution Model 3
.This model is equivalent to the case where the mixing energy vanishes, AE
= 0 in Eq. (4.1.2). Thus in this approximation, the mixing free energy AF 5
results totally from the additional entropy arising from a random
arrangement of NA A-atoms and NB B-atoms on their N lattice sites with N
= NA + NB and x - NB/N. The number of different arrangements is

(DO = N! (4.2.1)NA!NB! :

The corresponding mixing entropy is AS = klnoo. Using the Stirling I
approximation InN! = NInN - N, the mixing entropy for the random alloy is
obtained, I

AS = -Nk[(1-x) ln(l-x) + xnx] . (4.2.2)

This model always yields negative values of AF . -TAS for all x and T. As 3
a function of x, AF in Eq. (4.2.2) is always concave upward, so no
miscibility gap exists at any T. 3

ZEROTH APPROXIMATION i
When AE is not zero but the mixing entropy is still set equal to the random
alloy result, the model was named by Guggenheim (1952) the "strict- I
regular solution" model, or the zeroth approximation. If, following shapes
often experimentally observed in pseudobinary alloys, AE is assumed to I
have an x dependence given by

AE = vx(1-x).l (4.2.3) 1
then miscibility gaps exist at low temperature for positive molar
interaction parameters 0. In Eq. (4.2.3), v is the molar number v = N/No I
with No being Avogadro's number.

Equation (4.2.3) as we shall now demonstrate, is the expression for the I
mixing energy if pair-wise interaction energies and a random distribution
are assumed. Let z be the coordination number. Note that z is the number 5
of nearest neighbor atoms surrounding a site in the binary case, but it

I
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represents the number of the second-neighbor atoms in a pseudo-binary
alloy. For example, the value of z for a zincblende alloy is 12. Then the
total number of pairs involving the A and B atoms is M = zN/2. Let MAA,
MAB and MBB be the number of AA, AB, and BB pairs respectively, and let
EAA, CAB and EBB be the corresponding pair interaction energies. We further

define the fractions rij - Mij/M. Not all these pair fractions are
independent. Let r - rAB, then rAA - 1 - x - 0.5 r and rBB - x - 0.5r. The
mixing energy is governed only by the AB pair fraction r,

AE = MAAEAA + MABEAB +MBBBB - (-x)MEAA- xMEBB = MIM (4.2.4)

where c is the excess energy per pair and is defined as

e = eA - (eAA + B) / 2 . (4.2.5)

For a random alloy the pair probability is given by

r = 2 (1-x)x, (4.2.6)

so the mixing energy has the form of Eq. (4.2.3) with the interaction

parameter given by

= = No ze. (4.2.7)

This strict-regular model is the simplest one that contains some aspect
Iof reality, because it relates a positive mixing enthalpy to a miscibility

gap and critical temperature Tc. For example, Tc can be obtained

explicitly by setting Z AF/ x2 equal to zero at x - 1/2,* ° where AF - AE -
TcAS with E in the form of Eq. (4.2.3) and AS having the random alloy
expression in Eq. (4.2.2). The result is

TC = -a- (4.2.8)2R"

where R = No k is the universal gas constant.

* AF has its second derivative vanish at x - 1/2 in this case because of the assumed symmetric
forms of Eqs. (2.2.2) and (2.2.3). In more general cases that extend beyond pair interactions
as we shall see, the second derivative vanishes at x values of the composition x * 1/2.

F-7
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First Approximation - the Quasi-Chemical Approximation (QCA)

In the zeroth approximation, an energy term is added, but the distribution
of A and B atoms is still constrained to be random, a condition that is not
consistent with the non-zero excess pair energy e. Intuitively one expects

that the pair probability r for the AB pair should be smaller than the
random value in Eq. (4.2.6), if e is positive; and vice versa. The first 1
approximation in Guggenheim's notation (1952) corrects this flaw in an
approximate way. The correction comes from the mixing entropy. For a 3
random alloy, the number of ways of configuring the A and B atoms, 0o, is

given by Eq. (4.2.1). For a specified set of MAA, MAB; and MBB, the number of I
ways to arrange A and B atoms should be just 100 times the probability of
having the specified set of numbers of pairs (Sher et al. 1987) £

[) = N! M! y2MA (2xy)MAB X2M] (4.2.9)
NA! NB! LMAA! M! MBB! I

In Eq. (4.2.9) y - 1-x is the fractional concentration of A atoms. The term
outside the bracket is the total distinguishable number of ways to arrange
NA and NB atoms on N sites, and the bracket is the fraction of these ways, I
i.e., the probability, MAA, MAB, and MBB pairs will be found when the
concentration of B atoms is X .. This probability is the number of ways of 3
arranging the MAA, MAB, and MBB pairs on M pair sites times the probability

Of MAA pairs, i.e, (X2)MAA, MAB pairs, and MBB pairs. This expression still I
neglects the correlations between pairs but we shall show in Section 4.10
that in fact it does not.. Equation (4.2.9) should be compared with IGuggenheim's (1952) combinatorial formula

DG =  N! (Mx2)!(Mxy)!(MXy)!(My2)! (4.2.10)
NA! NB! MAA! MAB! MBA! MBB!

Note that the leading terms of InM and In4 G in the Stirling approximation I

are the same, so these two expressions give the same mixing entropy.

F
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However, the physics in Eq. (4.2.9) is more transparent and it is an easier
form to extend beyond the pair approximation.

The mixing free energy with D given by Eq. (4.2.9) and excess energy e

given by Eq. (4.2.5) is

AF = Mre - kTlnco + MkT [(x-r/2) ln(x-r2) + (y-r/2) ln(y-r/2) (4.2.11)
+ rln(r/2) - (xlnx + ylny)]

The value of r for an equilibrium distribution is the one that minimizes AF.

Taking the partial derivative Z)AF/'r and setting it equal to zero leads to a

I quadratic algebraic equation for r. The proper solution is

r= 4y .P )112 (4.2.12)

1I+4xyImpU-

This expression reduces to the correct limits. As e approaches 0, r

I approaches 2xy, which is the random limit given in Eq. (4.2.6). For large e
>> kT, r decreases exponentially, rae-F/kT, as expected. If e is negative,

i then r > 2xy, and for large enough Il >> kT the system is eventually driven
into compound formation, i.e., r -* 2x for x < 1/2, or r -+ 2y for x > 1/2.

The AB pair probability r in Eq. (4.2.12) can also be obtained by considering

the following chemical equilibrium

AA + BB - 2AB. (4.2.13)

According to the law of mass action, the equilibrium pair fractions obey

I the following relation

I rAArBB ZAAz1n e-EAI e9aP e2EP

I where 13 - l/(kT) and the zils are the partition functions for the indicated

I pairs. Equation (4.2.14) reduces to

r2 e2EkT = r2 - 2r + 4xy (4.2.15)I
F-9
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The proper solution for r from this equation is that given in Eq. (4.2.12). It I
is in this connection that the first approximation is often referred to as
the quasi-chemical approximation (QCA). i

QCA represents an improvement over the zeroth approximation because in
it the correlation of the distribution of A and B atoms, called the I
correlation state of the alloy depends on the pair energies. The level of
improvement can be appreciated by comparison with the exact analytical 5
solutions in two dimensions. The binary alloy statistical problem with
pair interactions is equivalent to the magnetic Ising model. For e > 0, the
alloy problem can be directly translated into the ferromagnetic Ising
model. The only difference is that while the alloy concentration X is
specified, x in the magnetic problem is further varied to minimize AF. I
Thus above Tc and with pair interactions the minimum of AF always
occurs at x - 1/2, which in the magnetic case means no net spin or I
magnetic moment. However, for temperatures below Tc, AF has two
minima occurring at x values xi and x2 corresponding to the miscibility 3
gaps indicated in Fig. 4.1.1. For magnetism, this situation corresponds to
having a net magnetic moment. Thus the alloy spinodal critical
temperature Tc is equivalent to the magnetic phase transition critical
temperature. £
The value of Tc in the pair model can be written as

Te = ..,,, (4.2.16)

where 0 is the interaction parameter Q - Noze defined in Eq. (4.2.7), and X

is a numerical factor that depends on the model used. For the zeroth
approximation we already found X - 2, [see Eq. (4.2.8)]. The zeroth
approximation is equivalent to the Bragg-Williams (1954) approximation 3
to the Ising model. For QCA, the X value is given by

X(4.2.17)1

This result can be obtained by starting from the expression for AF in Eq.

(4.2.11) and r in Eq. (4.2.12), and then taking the second derivative a2 AF/ax2

and setting it equal to zero at x - 1/2. In doing so, the conditions oAF/r-=0 

andoar/Nx=0 at x - 1/2 are used. An explicit derivation of a more accurate

F
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expression is given in Sec. 4.7. Note that QCA for alloys is equivalent to
the Bethe-Peierls approximation (Bethe, 1935; Huang, 1987) to the Ising
model.

Table 4.2.1 compares the ). values that enter the Tc formula, Eq. (4.2.17),
for a square lattice from different approximations against the exact
solution (Onsager, 1944) and for a fcc lattice against the best numerical
value available (de Fontaine, 1979). The results obtained from the cluster
variation method (CVM) to be discussed in Sec. 4.10 are also listed for
later use. Progressively more sophisticated statistical theories result in

Table 4.2.1

The values of X for the transition temperature Tc - Q/(.R) from different
calculations. CVM indicates the results from the cluster variation method
to be discussed in Sec. 4.10.

Alloy, Zeroth Approx. QCA, CVM Exact or Best
Ising Model Bragg-Williams Bethe-Peirls I Result

i Square Lattice 2 2.773 3.332 (square) 3.5255

fcc 2 2.188 2.438 2.4501

I After de Fontaine (1974), Table V.

larger X values, and hence smaller critical temperatures. Although OCA
predicts only 79% of the exact X value in the square lattice case, it gives

89% of the best computer simulated value for the fcc lattice. Therefore
not surprisingly, QCA has been used with reasonable success in semi-
empirical phase diagram calculations for semiconductor compounds and

alloys, as will be discussed in the next few sections.

I
I
I

F-i11

I



I
3

4.3 Phase Diagram: Common Tangent Line and Activity 3
Coefficient I

I
So far our calculation of free energies has been confined to solid
solutions. To find the phase diagrams one also needs to know the free 3
energies of liquids (or melts). Very often, liquids are treated as dense
lattice gases, as solids with a high concentration of vacancies, or simply
as a disordered system with some effective coordination number. The
latter treatment has been used with some success in the calculation of
phase diagrams of compound semiconductors and alloys. This and the next U
sections introduce the basic ideas governing phase diagrams including (1)
the liquidus curve between a binary liquid Al-xBx and a stoichiometric i
compound AB, e.g., between a GaloxAsx melt and stoichiometric solid
GaAs; (2) the liquidus-solidus curves describing the equilibrium between a
ternary liquid and a solid pseudobinary alloy; and (3) the general ternary
phase diagrams. The basic ideas and most results are in the papers of
Vieland (1963), Stringfellow and Green (1969), Kikuchi (1981 and 1982) I
and Breberick et al. (1983), and in a text by Casey and Panish (1978).

As mentioned earlier the equilibrium state at a given P and T is the state i
with minimum Gibbs free energy. To construct a phase diagram, we first
calculate the free energy curves as a function of alloy concentrations for3
all the relevant phases, and then find the combination of phases that
minimizes the free energy. For example, consider the liquidus-solidus 3
curves between a pseudobinary liquid and the solid solutions Al-xBx C
schematically shown in Fig. 4.3.1a. The corresponding free energy curves
for both phases as a function of x for a given temperature T1 are drawn in
Fig. 4.3.1b. Pay attention to the common tangent line that touches the two
free energy curves at xi and X2. This picture illustrates the cause of the
equilibrium state behavior as a function of the average alloy
concentration x at this temperature. For x less than xl the liquid phase is 3
the stable phase, and for x > x2 the solid solution is the stable phase. For
an average concentration lying between xi and x2 the stable state is a 3
mixture of a liquid phase with concentration xl and a solid phase of I

F-12
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Figure 4.3.1 (a) Schematic liquidus and solidus curves, and (b) the

corresponding free energies of the liquid F and solid Fs at T1 as a
function of alloy composition x.
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concentration X2 with proportions governed by the level rule. The two 1
free energy curves at this temperature Ti give two phase boundary points

(denoted by L and S) for the liquidus-solidus curves shown in Fig. 4.3.1a. I
The full liquidus-solidus curves are generated from a set of such free
energy curves derived by continuously varying the temperature. This 3
procedure for minimizing the free energy using the common tangent line is
equivalent to matching the chemical potentials, as will be demonstrated
below.

The Gibbs free energy G, or in practice the Helmholtz free energy F, for a
given phase can be written as a sum of the products of the number of
particles Ni and the chemical potentials gi of all the atom and molecular

species i in that phase,

F=G=_, Ngi (4.3.1)
i

Conversely the chemical potential can be calculated from

gi = ()F/ aNi)(N, i*j) (4.3.2) 1
Now consider the equilibrium between two phases, denoted by a and 0, of a

binary alloy Aj-xBx at a given temperature T, such as depicted in Fig. I
4.3.1b. Let the common tangent line touch the two free energy curves Fa
and Fp at xa and xp respectively. Denote the chemical potential of an A

atom in the a phase l±A(x,,T) as ix., and assign similar meanings to g" Ik, I
and IO. Algebraically, the common tangent line requires

i)Fa (xe, T) / ax = Fip (xp, T) / ax (4.3.3) 3
and

Fp (xp, T) = Fct (xet, T) + (xp - xa) aFcg(xct, T) a x. (4.3.4)3

In terms of the chemical potentials, we have I
Fa (xaT) -N [xc1e.+ ( - X)L (4.3.5)

Fp (xpT) = N XP (1 - xP) g], (4.3.6) 1
F!
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I FU (xQ',) / ax = N( 14-1 (4.3.7)

I ~~W (411T) / ax = ( 4- (4.3.8)I
Using these expressions in Eqs. (4.3.3) and (4.3.4) leads to the usual

conditions for chemical equilibrium, 14A - g4P and 4=g.

Very often the activity coefficients y rather than the chemical potentials

14 are used in phase diagram evaluations. The activity coefficient Ti is

related to the chemical potentials byI
1i - g4o = kTln(xft) , (4.3.9)

where goi is the chemical potential for the pure phase of the ith species.
For an ideal solution, i.e. a random mixture which is always found in the
limit T --+ -, all the activity coefficients become unity, yj - 1. In the
zeroth approximation for a binary Al.xBx (or a pseudobinary AI.xBxC), the
activity coefficients can be shown to be given by

YA = exV(RT), (4.3.10)
YB8 = e( I X)2 W(RT).  (4.3.11)

l In QCA, using Eq. (4.2.11) and (4.2.12), one finds

SYA = 1--x+f/zf 2  (4.3.12)b l- x) (I + Or

2f x- .z/ (4.3.13)
( x(l + f) J

1where f is related to the excess energy e by

Sf=[1+ 4xy (e2P - 1)i 2] (4.3.14)
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with 1 - l/(kT). These results will be used in the next two sections. 3
4.4 Vieland's Method and a Binary Llouidus 3
The Vieland (1963) method, which establishes the relation between
chemical potentials of a stoichiometric solid AB compound and those of
the super-cooled liquid solution Ao.5 Bo.6 through the entropy of fusion and
heat capacity differences between the two phases, remains the principal
way of calculating phase diagrams between semiconductor solids and
liquids.

Consider the equilibrium between a liquid solution Al.xBx and a solid
compound AB. A schematic liquidus curve is shown in Fig. 4.4.1a while the
corresponding free energy diagram at a given temperature T is given in I
Fig. 4.4.1b. In equilibrium, the chemical potential I.AB per AB pair (unit
cell) in the AB compound must be equal to the sum of the chemical e
potentials in the liquid solution

AAB = PlA (XO) + 9B (XO), (441 I

where xo is the point at which the common tangent line touches the liquid
free energy curve shown in Fig. 4.4.1b. The free energy of the solid
compound with N unit cells at this temperature is of course Fs - NgAB. Fs
can be related to the free energy of a super-cooled 50 - 50 liquid solution
by following a sequence of quasi-equilibrium steps. First, heat one mole i
of an AB crystal from T to the melting temperature Tm, i.e., going from the
point marked S to M in Fig. 4.4.1a. The change in the free energy in this 3
step is

Fs (Tm) - Fs (T) = - Ss (T)dT' , (4.4.2)

The subscript s denotes the solid phase. The entropy S is related to the I
heat capacity Cs by

F
F-i16 I



M

F

rL

A Asl 9

.IX

Figure 4.4.1 (a) Schematic liquidus curve for a compound

semiconductor, (b) free energy curve Fq as a function of composition x

of a binary liquid at a given temperature T and the corresponding value

Fs for the solid compound at the same temperature. Points L and S
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T. I
Ss (T) = Ss (Tm) - C (T') dT (4.4.3)T@

I
Combining the two equations above yields,

Fs (Tm) - Fs (T) = - Ss (Tm) (M- T) + I=Cs(TT) ..T dTdT' (4.4.4)

The second step is to melt the crystal at Tm which causes no change in the I
free energy. This situation corresponds to Figure 4.4.1b with the liquid
free energy curve lowered to pass through the solid free energy minimum I
labeled S.

Finally the liquid is cooled back from Tm to T (a super-cooled liquid), I
which changes the free energy by

F0 T)-0 (rrO -SQ C~)(TTin- J=J C4.(..LdT"dT' (4.4.5)

Fg MT) - FQ (Tm) -S (TM) ( TM) - ITjCV(M r(4.4.5) I

The subscript Q indicates the liquid. The total change is

FM - Fs M (Tm)- Ss (Tm) ] (TmT) (4.4.6) 3
JT

mJr [ cr')-cr ]-dT".

In terms of chemical potentials, Eq. (4.4.6) can be written for one mole of

AB compound as,

No [(14A (0.5) + 1B (0.5) - LAB]) = No AS (4.4.7)

= ASm (Tmi- T)- AC[Tm- T- Tin (Tm/T)], I
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where AC = CQ (T) - Cs(T) is assumed to be independent of T, and the

entropy of fusion is defined as ASm= SQ(Tm) - Ss(Tm) for one mole of AB

compound. Using Eq. (4.4.1) for 11AB and the relation between the chemical

potentials and activity coefficients in Eq. (4.3.9), Eq. (4.4.7) can now be

written as

In . +In[yA (0.5) yB (0.5)]
[4xo(1 -xo)] [ l A (XO) (xo) (4.4.8)

RT m RTLI IT1J

This is Vieland's (1963) formula. It is a simple transcendental equation
for T as a function of Xo - the liquidus curve. When the liquid solution is
in equilibrium with the pure solid B phase, the liquidus is governed by a
similar equation

TIn E -% - T[Tin T (4.4.9)
IOj(xo)]&S~m(T a T)-RT[ I T

To actually calculate the liquidus curve using Eqs. (4.4.8) and (4.4.9), one
needs to know the activity coefficients YA and YB, which of course, depend

I on the statistical model and the energetics. If QCA is used, these activity
coefficients are given explicitly by Eqs. (4.3.12) and (4.3.13). Then theI remaining quantities needed are the mixing energy parameter a - Noze for
the binary liquid, the fusion entropy ASM, and the heat capacity difference
AC. In most applications AC has been taken to be zero, which is a good

approximation at high temperature. This approach works reasonably well
for the Ill-V binary compounds. Examples are shown in Fig. 4.4.2, where
calculated liquidus curves (Stringfellow and Green, 1969; Kikuchi, 1981)
for GaAs, InAs and InSb are compared with experiment. The parameters
used in the calculations are listed in Table 4.4.1. Note that the entropy
unit eu used for ASm is eu - J/(K-mole). The symmetrical liquidus curves

I
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Figure 4.4.2 Liquidus curves of Ill-V semiconductors. Solid curves
are theory and circles are experiments. After Kikuchi (1981).3
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indicate that the QCA model, with coordination number z - 4, is a
reasonable representation of these binary melts. This approach, however,
does not work well for the II-VI systems. As shown in Fig. 4.4.3, the
skewed and sharp nature of the experimental curves indicates that these
liquid solutions are more complex than the simple picture represented by
QCA for the binary solutions. A simple extension of QCA to include the
molecule species AB in addition to A and B in the liquid solutions is found
to work well,as indicated by the comparison with experiment in Fig. 4.4.3.
This extended QCA model is called the associated solution model. Kikuchi
(1982) found that repulsive interactions between the molecular and
atomic species in the solution are responsible for the skewed nature of
the liquidus curves.

Table 4.4.1

Parameters used in the calculation of liquidus curves in Fig. 4.4.2 andIhase diagrams in Fig. 4.5.4.

Melting Temperature Entropy of fusion Mixing enthalpy parameter

Tm (K) ASm(eu) Q (cal/mole)

I GaAs 1511 GaAs 14.7 Ga-As -4380

InAs 1215 InAs 14.7 In-As -6070

InSb 803 InSb 13.3 In-Sb -3980

As 1090 As 3.67 In-Ga 1066

Sb 903 Sb 5.27 As-Sb 610

GaAs-InAs 2800

InAs-InSb 2900

After Stringfellow and Green (1969)

I
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4.5 Ternary Phase Diagram

The methods of Sec. 4.4 are next extended to the phase diagrams for
ternary systems. The phase boundary curves are the solidus-liquidus
curves that describe the equilibrium between the pseudo-binary solid
solutions
Ai-xBxC and the liquid ternary solution denoted by AaBbCc, where a, b, and

c are fractional concentrations satisfying normalization a+b+c - 1. A
schematic three-dimensional phase diagram is shown in Fig. 4.5.1; it is a
plot of the temperature T versus concentrations. The liquidus is the upper
surface and the solid pseudobinary phase is the plane lying between the
two lines labeled AC and BC. A given set of ab, and c values corresponds
to a point D inside the base triangle ABC, as shown in Fig. 4.5.2. The
values of a, b, and c are related to the geometric line ratios by a -

DA'/AA', b - DB'/BB' and c - DC'/CC'. The solidus-liquidus boundaries form
a family of curves relating the solid concentration x and the temperature
T to the two independent liquid concentrations a and b (note c - 1 - a - b).
These relations can be obtained by matching the chemical potentials g±
described below.

Let us start with AAC and IABC for the AC and BC components in the solid
solution AI-xBxC. They are related to those in the pure AC and BC
compounds through the activity coefficients y by

ILAC (x,T) = pOC (T + kTln [(1 - x) YAC] , (4.5.1)

I and

A'BC (x,T) = 'BC (T) + kTln (x'tc) , (4.5.2)

where the superscript 0 designates pure compounds. Now Vieland's
relation in Eq. (4.4.7) can be used to relate the chemical potentials gO of

the pure solid compounds to those of the super-cooled 50-50 binary liquid

mixtures, denoted isc. For example, IL°C is given by
0A _A AC

9AC = IASA + I -AO, (4.5.3)
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I Figure 4.5.2 Any point D inside the triangle ABC defines a unique set

of frcinconcentrations in ternary alloy AaBbCc by a - DA'/AA', b ,.
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Note that Agi is expressed in terms of a change in the heat capacity AC and

entropy of fusion ASm between the 50-50 binary liquid and the solid I
compound AC given by the right side of Eq. (4.4.7). Since the ternary liquid
is in equilibrium with the solid pseudo-binary, IAC and 9BC in the latter =
are equal to the sum of the chemical potentials for the atomic species in
the former by

JAAC (x,T) = PA (a,b,;T) + .c (a,b:T) (4.5.4)

A similar expression holds for I9BC. The g- for the atomic species in the 3
ternary liquid can be further expressed in terms of those of the pure
elementary liquids and activity coefficients by

gA= A+kT~n(a ) (4.5.5)

Combining the above three equations with Eq. (4.5.1), one obtains the 3
equilibrium condition

I n E ( 1 - x ) TA ( f + A C ~In [(I -x) 7Ac]l In jA  4 + (4.5.6)

Similarly, Eq. (4.5.2) leads to

In (xsc)=In(1B) .+-t (4.5.7)

I
To calculate the phase diagram from Eqs. (4.5.6) and (4.5.7), one needs to
know the x and T dependence of the activity coefficients yAC and YBC for the 3
pseudobinary solid solutions, the T dependence of the activity coefficients
ysc of the super-cooled 50-50 binary liquids, and the T and concentration
(a,b, and c) dependences of YA, YB, and YC in the ternary liquid solutions

AaBbCc. In addition AC and ASm are needed for the calculation of the AgI. If

QCA is used, then the activity coefficients for the binary liquid and pseud-
binary solid solutions take the forms of Eqs. (4.3.12) and (4.3.13). For the
ternary liquid solution, QCA has to be extended to three components.
There are now six different kinds of pairs to be considered, namely, AA,

F-26 I



1BB, CC, AB, BC and AC. We label these pairs by j, where j runs from 1 to 6,
and denote the fractions of each pair as xj. If independent pair energies
cap are assumed, there are only three nonvanishing energy parameters, AAB,
AAC, and ABC, while AAA - ABB - ACC - 0, where we have defined Aap - cap -
(Iaa + epp)/2. Then it is straightforward to write the mixing energy as

6
AE = MxjA, (4.5.8)

j=1

where M - Nz/2 with z being an effective coordination number, taken to be

4. The mixing entropy is AS - kincI, with (D given by

6

N! NJ$ I" I[Rx11) Mi1 (4.5.9)
NA!NB!NC! 6 (4.5.9)JJ Mj! j=1

j=1

where M i = xiM and x? are the a priori probabilities, e.g., xOAA = a2 and
AB 2ab etc. This 0 is a simple extension of Eq. (4.2.9). The mixing free

I energy then reads
6

AF Y, NxMjAj + kTXj 1n( xj / x°)] + NkT (alna + blnb + clnc). (4.5.10)Ij=1
Note that not all the xj are independent. They are constrained to have the
right numbers of A B, and C atoms for a given set of fractional
concentrations, a, b. and c:

2xAA + xAB + XAC = 2a, (4.5.11)

2 XBB + XAB + XBC = 2b, (4.5.12)

2xcc + XCB + xAc - 2c, (4.5.13)

Minimization of AF with respect to the xj under the imposed constraints

leads to the following three coupled equations:

I (2a-xAB - XAC) (2b-xAB - xBC) = xi exp ['AB / (2RT)] , (4.5.14)
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(2a-XA - XAC) (2C-XAC - xBc) I exp [QAC / (2RT)], (4.5.15) I
(2b-xAB - XBC) (2C-XAC - XBC) = xi Cxp ["lBC / (2RT)], (4.5.16) 3

where the mixing energy parameters are defined as Qa - No zAap, with z

taken to be four. After Eqs. (4.5.11) through (4.5.16) are solved for xj,
they are used in Eq. (4.5.10) to obtain the functional dependence of AF on 3
the concentrations a, b, and c and on the temperature T. Then the activity
coefficients can be calculated. For example, yA is calculated from

kTln(ayA) = (OAF / aNA)NzNc (4.5.17)
- (AF / aa) (a / N.A) + (i)AF / ab) ()b / aNA) . I

In this equation, a and b have been chosen as independent variables with c 3
- 1 - a - b.

Thus the parameters needed to complete the specification of a ternary 3
phase diagram in QCA are AC and ASm for both AC and BC compounds, the
mixing energy parameters QAB, QAC, and OBC for the ternary liquid and 3
'GAB(C) for the pseudobinary solid solution. It is a good approximation to
set AC - 0. There are four independent variables, say, a, b, x, and T, and
two equations, Eqs. (4.5.6) and (4.5.7) with which to work. One can fix T U
and solve for a (and hence c - 1 - a - b) and x as functions of b. Plots of
the contour of a, b, and c for the same T in the Gibbs triangle ABC, is an I
isotherm. If the solidus concentration x is fixed, the contour of a, b, and c
in the Gibbs phase plot is the iso-solidus-concentration line. Figure 4.5.3 3
shows both sets of these plots for the In-Ga-As system reported by
Stringfellow and Green (1969) using the parameters given in Table 4.4.1.
We can fix c - 0.5 in the ternary and solve for x and T as a function of a,
then we obtain the liquidus and the solidus curves along the c - 1/2 line,
as shown in Fig. 4.5.4, also by Stringfellow and Green and further verified 3
by Kikuchi (1981). The agreement between the theory and experiment is
remarkably good. I

I
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I 111-V TERNARY PHASE DIAGRAMS
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I~ .'i

Figure 4.5.3 Isotherms and iso-solidus concentration lines for phaseI equilibrium between pseudobinaries tni.xGaxAs and the corresponding
ternary liquid. After Stringfellow and Green (1969).
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Figure 4.5.4 Liquidus and Solidus curves for Inl.xGaxAs and InSb1.
xAsx. Solid curves are calculations and the circles are the
experiments. After Kikuchi (1981).
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4.6 Phase-Diagram Data and Simple Mixing Enthalpy Models

Before moving into more rigorous statistical theory and more systematic
energetic calculations, it is useful to summarize the semiempirical phase
diagram data and simple statistical and energetic models that have been
used in practical calculations.

From a survey of phase diagram calculations of ternary and quaternary
semiconductors, Stringfellow (1974) preferred the following forms for
mixing free energies. For the Ill-V liquid solutions, the preferred form
(per mole) isI AFQ = x(1-x) (41 - 2T) + RT (xlnx + ylny) (4.6.1)

For the Il1-111 and V-V liquids and pseudobinary solids, the strict regular
solution model is his preference,

AF = x(1-x)Q + RT (xlnx + ylny) (4.6.2)

Table 4.6.1 lists the values of Q Q - 41 - 42T and other phase diagram data
including the entropy of fusion ASm, the melting temperatures Tm for the
Ill-V binary systems, and the mixing energy parameters for the Il1-111 and
V-V interactions in the liquid solutions. In Table 4.6.2, the experimental
values of 0 based on Eq. (4.6.2) are compared with the mixing enthalpies

I calculated from several theoretical models to be discussed presently. One
has to be cautious in comparing the experimental Q with the calculated
values, because the former may include additional contributions from
entropy terms not contained in the second term of Eq. (4.6.2).

One simple model for estimating the mixing energy is the so-called delta
lattice parameter model (DLP) suggested by Stringfellow (1974). He
observed that the experimental Q values for the Ill-V pseudobinay alloys
AI-xBxC correlated strongly with the difference in the lattice constant
Aa - aBc- aAC, as shown in Fig. 4.6.1 in a log-log plot generated by

F
I
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Table 4.6.1

The values of Q 41 - 42T in Eq. (4.6.1) for the liquid mixing enthalpy

parameter Q.Q in cal/mole and other parameters in the liquid phase. 3
System fQ Q (cal/mole) ASm (eu) TM(C)

AlP 2800-4.80 T 15.0 2530

AlAs 600-12 T 15.6 1770 3
AlSb 1230-10 T 14.74 1065

GaP 28000-4.8 T 16.8 1465 1
GaAs 5160-0.16 T 16.64 1238 3
GaSb 4700-6 T 15.8 710

InP 4500-4 T 14.0 1070 U
InAs 3860-10T 14.52 942

InSb 3400-12 T 14.32 525

AI-Ga 104 3
Al-In 1060

Ga-In 1060 I
P-As 1500 3
As-Sb 750 U
After Stringfellow (1974)

I
I
I

F-32 I



Table 4.6.2
Mixing energy parameters 0 in Kcal/mole. For models in which the
mixing enthalpy AH is a function of both x and T, 0 is defined as
AH-x(l-x)G for a random alloy (T-o) at x-0.5.

system DLPa FMb IMPc MZd  CSO GQCA' WFs  Exp

(Ga,AI)P 0.00 -0.05 0.01
(Ga,Al)As 0.02 0.03 0.00 0.02 -0.07 0.03 0.30 0.0h

(Ga,Al)Sb 0.02 0.03 0.02 0.02 -0.15 0.12 0.0

(Ga,In)P 3.63 2.94 3.00 4.56 2.54 2.85 3.07 3.25? 3.40 3.50b

(Ga,In)As 2.81 2.42 2.36 2.49 1.60 2.19 2.35 1.65? 2.001 3 . 0 0h

(Ga,In)Sb 1.85 1.83 1.77 2.53 0.81 1.72 1.48, 1 . 90h

(In,A1)P 2.77 2.55 2.66
(In,A1)As 2.81 2.37 2.32 3.60 2.17 2.26 2.50
(In,Al)Sb 1.46 1.45 1.49 2.06 1.36 1.46 0.66h

(Cd,Zn)Te 1.97 1.63 1.73 2.12 1.24 1.59 2.29 1.34m
(Hg,Cd)Te 0.00 -0.07 0.03 0.38 0.72: 1.40m(Hg,Zn)Te 1.81 1.48 1.56 1.91 1.50 1.55 1.88 3.00®

A1(PAs) 0.65 0.76 0.67

Ga(P,As) 0.98 0.66 0.70 1.15 0.94 0.74 0.91 0.40, 1.00, 1.26p
In(P,As) 0.58 0.52 0.52 0.72 0.57 0.52 0.40h

AI(As,Sb) 3.38 4.09 3.45
Ga(As,Sb) 3.35 2.76 2.81 4.38 3.67 2.92 4.00, 4.27P 4.50
In(As,Sb) 2.29 2.17 2.23 2.89 2.52 2.20 2.25 2.90 J

A1(P,Sb) 6.99 8.32 6.94
Ga(P,Sb) 6.36 8.66 6.57
In(P,Sb) 5.08 5.76 4.97

Zn(S,Se) 0.98 0.90 0.95
Zn(Se,Te) 3.11 2.12 2.23 2.91 2.26 2.16 1.55
Zn(S,Te) 6.45 6.20 6.12

a: Stringfellow (1974), 0 in Eq.(4.6.5).
b: Fedders and Muller (1995, 0 . in Eq.(4.6.7).
c: Chen and Sher (1985), 0. incq.(4.6.13).
d: Martins and Zunger (19847, VFF model.
e: Chen and Sher (1985), VFF plus BOM perturbation.
f: Sher et al. (1987), the 16-bond model in Sec. 4.9.

g: Wei et al. (1990), LDA calculation described in Sec. 4.11.
h: Panish and Ilgemes (1972).
i: Foster (1972).

J: Antypas (1970b).
k: Foster and Woods (1971).
1: Antypas (1970a).
m: Laugies (1973).
n: Su et al. (1985), value taken at 1000K.
p: Stringfellow (1974, 1982).
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Figure 4.6.1 Log-log plot of experimental values of a versus

percentage lattice constant difference. The solid line represents the

best straight-line fit. After Stringfellow (1974).

F-34



Stringfellow (1974). The best straight line fit gives a slope of 2.45,
yielding the following fitted function:

Qfit = 1.174 x 106 (Aa/a)2.45 , (4.6.3)

where a = (aAC + aBC)/2. This result prompted Stringfellow to correlate
with Phillips and Van Vechtan's (1970) dielectric model, which relates
the alloy formation energy to the energy-gap parameter Eh [see Eq. (2.6.4)],
which in turn is roughly proportional to a-2 .5 . By simply assuming that
the formation energy has the form

E = -1C/a 2.5  (4.6.4)

for every semiconductor, then the mixing enthalpy is given by

AH = E(alloy) - xE(BC) - (l-x) E (AC)

= -IC [a-Ify- x aje-(l-x) aj2pS] (4.6.5)

= 4.375 lcx (l-x) (Aa) 2 / a4 -5 = x(1-x) QDLP

II In Eq. (4.6.5) the alloy lattice constant aalloy is assumed to be the
concentration weighted average (Vegard's Law), and only terms to second

I order in Aa in the Taylor expansion have been kept. If ic is treated as an
adjustable parameter, the best fit to the Ill-V alloy data yields K - 1.15

i for Ql in kcal/mol and Aa and a in A. This model gives very good results, as
indicated in Table 4.6.2.

Arguing from a different point of view Fedders and Muller (1984)
suggested that the Aa 2 dependence in Eq. (4.6.5) might originate from
strain energy. If the alloying atoms A and B are held rigidly on their fcc
sublattice sites, and if the alloy lattice constant is taken to be the
concentration weighted average (Vegard's law), then the strain energy in
the alloy can be shown to be AE - x(1-x)!)FM with a mixing energy
parameter given by

I FM= BV (Aa/a)2 , (4.6.6)I 2
I where B is the average bulk modulus and V the average molar volume.

Because B in semiconductors varies as a- n with n ranging from 5 to 9 (see

I
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Chapter 3), QFM is seen to behave like (Aa) 2 /an-1 . Thus the power law I
dependences on Aa and a in DDLP and QFM are similar. However, DFM is

about four times larger than the experimental values. In fact a scaled I
down strain contribution,

scage = 0.226 QFM (4.6.7) 1
yields results comparable to those of QDLP. The reduction of £QFM is

mainly due to bond length relaxation neglected in the above derivation.

If strain energy is the main contribution to the mixing enthalpy, then the

valence force field model (VVF) given in Eq. (3.3.1) should provide a means
to formulate a systematic calculation. One can replace an A atom in the
AC crystal by an impurity B atom and calculate the substitution energy
AE(B in AC) and vice versa for AE(A in BC), then the mixing enthalpy

parameter is given by (Chen and Sher, 1985) 3
Qmp = [AE(A in BC) + AE(B in AC)] / 2 . (4.6.8)

To calculate these energies precisely in VFF, one has to allow the atoms I
in the first several shells about the impurity to relax. The results of such
calculation (Martins and Zunger, 1984; Chen and Sher, 1985) do give good
results for mixing energy and bond lengths between the impurity and the
first shell host atoms. However, it was found (Chen and Sher, 1985) that 3
by neglecting the bond angle terms in the VFF (3 - 0) and at the same time
truncating the range of the atomic relaxation at the second shell, a simple
spring model similar to that shown in Figure 3.7.1 yields nearly the same
results as the extended VFF for both the impurity bond lengths and alloy
mixing energy. It is instructive to examine this simple spring model U
closely. Let the sixteen bonds before the substitution be the host BC
bonds with VFF force constant a and bond length d. When the central B 3
atom is removed and an A atom is substituted in its place, the bond length
dl of the first shell and d2 of the second shell are different from d. The
strain energy in VFF with 03 - 0 ,and assuming the second shell atoms are

held firmly in place, is then given by

AE(A in BC)= 41-a (d - d)2] + 12 [3- W(d2 " d)2] (4.6.9)

II
F-36 U



where the subscript i denotes the impurity bond in its own crystal (i.e.,
the AC bond in the pure AC crystal). Let 8 - (dl - d)/d and 80 - (d- d)/d,
then in the relaxed configuration (d2 - d)/d - -8/3 and Eq. (4.6.9) becomes

AE(A in BC)= 2 (8 - 80)2 + . a82] d2  (4.6.10)

I Minimizing AE with respect to 8 yields the following value of d at the
equilibrium position

8=8/(1 .-t • (4.6.11)

If both a and a, are nearly equal then

-8 =- 80  (4.6.12)-4

and AE (A in BC)- 3ae8od2/2 . Similar results can be obtained for AE(B in

an AC host). Equation (4.6.9) then yields the following estimate for the
mixing energy parameter from this impurity model,

fimp = 3a6?O d2 / 2 (4.6.13)

_ Note that this model, Qimp is precisely one quarter of QFM. Thus this
simple relaxed lattice model not only explains why the strain energy isI_ reduced by 1/4 but also gives a very good prediction of the value y - 0.75
for the lattice relaxation [compare Eq. (4.6.12) with the definition of y inIEq. (1.3.1) and Table 1.3.1] found in pseudobinary alloys from the EXAFS
experiments. While this short range strain model with 3 set to zero
produces accurate results, keep in mind that it is not the way nature
actually behaves. The approximation works only because effects from
long range relaxation nearly cancel the lowest order modifications caused
by the Pi terms. If one asks questions that involve shears, or for more
detailed structural information, e.g., the second neighbor distances, then
effects due to 03 and long range relaxations must be included.

4.7 Generalized Quasi-Chemical Theory (GOCA)

There are at least two reasons to extend the theory beyond the first
approximation. First, the effects of the neglected statistical correlations

I should be improved. Second, and perhaps more importantly, the
microscopic energies that govern the statistics may not be described by
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I

simple pair energies. In this section, QCA is generalized to deal with I
clusters of any size.

Let each cluster contain n atoms on the sublattice occupied by the A and B I
atoms and let J+1 be the number of different configurations in which the
A and B atoms can be arranged on a cluster with a distinct energy ej, for I
j = 0, 1, ..., J. For example, in the case of a tetrahedral cluster in which ej
differs only when the number of B atoms on the cluster changes, then the
index j will equal the number of B atoms on the cluster, and therefore
takes on five values j - 0, 1, 2, 3, and 4. However, for a square with two A
atoms and two B atoms on the corners the energy for two atoms on the
same side may be different from that when they are on a diagonal. So J
may be larger than n. Obviously, the degeneracies of arrangements with
the same sj tend to decrease if J > n since the total number of
configurations is fixed, i.e., for a 4 site case, it is 24 . Let M be the total I
number of clusters in the alloy, Mj be the number of the j-type clusters so
that M - 2: Mj, and xj - Mj/M the fraction of the j-type clusters. Let us

further define n'(nP) to be the number of A (B) atoms in a j-type cluster,

and the notation nj will stand for njP. Since the concentration x is fixed, 3
the set of fractions xj are constrained to satisfyB Ij

nx = n x (4.7.1)j-0

The mixing energy for a specified set {Mj) is then given by
j

AE=j=0XMJj - MI( I -x) e(n) + x4 (n)], (4.7.2) I

where L°(n) and d° (n) are the energies of an n-atom cluster in the pure AC

and pure BC crystals respectively, as indicated by the superscript 0. We
note that the cluster energy LO - LA(n), which is the energy in the alloy for

a cluster containing all A atoms, in general differs from e°(n), because of 3
the influence of strain and different chemical bonding. Let eA - eO - °(n)

and similarly for LB - Ej - ° (n) . Then Eq. (4.7.2) can be written as

AE = M [(0-X) eA + X] + MB j xjAj , (4.7.3)

II



where the reduced excess energies Aj are defined as
n -n , n-.

Aj = ej-J..O--1 E3 (4.7.4)

and use has been made of Eq. (4.7.1) Note that by definition AO and Aj are

I zero.

All the temperature dependence arising from the statistical mechanics is,
as we shall see, contained in the xj factors. Therefore, the first term of
AE in Eq. (4.7.3) does not influence the temperature dependence arising

from averaged statistical quantities for a given x; nearly all the
temperature dependence is in the small second term. The mixing entropy
can be calculated from kinO with 0 given by [an extension of Eq. (4.2.9)]

0= N! M! H ( ,  (4.7.5)
NA!BI r Mj! j

where x0 is the a priori probability, i.e., the random-alloy value

xjQ = gj (1-x)('nj)xnj , (4.7.6)

and gj is the degeneracy of clusters with energy ej. The resulting mixing

entropy takes a simple form

AAS = -Nk (xlnx + ylny) - Mkj xj In (xj / x0) . (4.7.7)

Eqs. (4.7.2) and (4.7.7) thus combine to give an explicit expression for the
mixing free energy AF - AE - TAS in terms of xj.

To find the equilibrium cluster probability distribution (Ij), one takes the

partial derivatives &AF/axj and sets them to zero. Although there are J + I

unknown xj's, there are two independent constraints, one given by Eq.
(4.7.1) and the other is that the total probability is unity,

xj= 1  . (4.7.8)
J

I This leaves us with J - 1 nonlinear coupled equations to be solved for the
thermally averaged fj}). While the set {ij) are the equilibrium values of

I
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U

the msre general set (xj), we shall leave the bar off since it causes no I
confusion. A simple approach to the numerical problem is to use the
Lagrange multiplier formalism in the constrained variational calculation U
for the {xj) set, i.e.,

' M [ xj) -] -a[ nixj)-nx]}=0 (4.7.9) U
This relates xj to the Lagrange multipliers y and a I

xj = x0 exp [(y + anj-Aj) kT] . (4.7.10)

I
The normalization condition (4.7.8) is then used to eliminate Y and obtain

the following result
xj x0 exp[(xnj-Aj)/kT/,j_ x° exp[(anj- Aj)/kT] (4.7.11)

The algebra is simplified by defining a new variable T1 - xeap/y. Then 3
xj = gj iinj e-M / Z (4.7.12)

where 13 - l/(kT), and Z is a cluster grand partition function

Z = gjnle-PA (4.7.13)

In general the thermal average of any dynamic variable D is

D=Dxj (4.7.14)3

Then the expression for xj in Eq. (4.7.12) is used in the other constraint
equation (4.7.1) to arrive at the following nth order polynomial equation I
for the unknown parameter I

Kj=X njxj= njgjn' e-Iv/Z = nx (4.7.15) I
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We shall refer to the above argument as the generalized QCA (GOCA), while
QCA is reserved for the pair interaction case.

To illustrate the usefulness of the equations developed in this section, let
us consider the case in which the cluster energies ej depend only on the

number of A and B atoms in the cluster. For a cluster containing n atoms
there are a total of n + 1 distinct energies of the cluster type A(n-j) B(j)
with j ranging from 0 to n and with nj j. Then the cluster degeneracy is
simply

9i (n! (4.7.16)gJ=j! (n - j)!

In terms of il and Z the mixing free energy is given by

AF = N (YEA + XE) + NkT [(1I - nQ ) (xlnx + yny)- Q.1nZ + n. xln] ,(4.7.17)

where we have defined Q . M/N. Notice that a term from AS has exactly

cancelled the temperature dependent term xjAj in the enthalpy. Thus it
is impossible to determine the temperature variation of AE from a

measurement of AF.

To determine the miscibility gap, the spinodal curve, and critical

temperature we need to examine the derivatives of AF with respect to x.

They are simply given by

I
(4.7.18)

+Nkl (- n) In(x/Y) + -(+n. InI]

I and
[2 ~ .~ a2EA aCB

I aX2' hAx ax 1 +y a-X27  (4.7.19)

I +Nk{1-nV)/(xy)+( )(&)nI V.~ + nQ i

I
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Equation (4.7.17) is obtained from Eq. (4.7.16) by taking the partial of Z
given by Eq. (4.7.13) with respect to x, and combining the result with Eqs.
(4.7.12) and (4.7.14) to yield the relation

°x lml °a]nZ + -L D / (4.7.20Dx - ax kT x

If the a/a~x is also taken of Eq. (4.7.15), that produces a second equation in

alnij/ox and alnZ/ax which can be solved along with Eq. (4.7.20)

n + -L nj -nx aoijl kT -
aini -'~ .{ ai)al} (4.7.21)I

ax l - fl2 X2  1 (ax~)
and

aln T\xx k aJ (A (4.7.22)I) a~nx 2 ax I
Equations (4.7.18 - 4.7.22) recognize that the excess energies CA, LB and
the set {Aj} have an explicit x dependence. This can be seen in Fig. (4.9.2)
where this x dependence for Gal.xlnxAs is plotted. In this case the
variation of the set {Aj) is quite small. However, as we shall
demonstrate later for lattice mismatched alloys LA ELA x2 and L_ EBo Y2 are
good approximations where LAO- EB0 >> Aj for all j. This dependence arises 3
because a pure A or pure B cluster has large strain energy in the alloy
whose average lattice constant follows Vegard's law (see Fig. 1.5). 3
Given these x dependences of EA and LB the leading mixing enthalpy term in
Eq. (4.7.7) becomes 3

N . (YEA + xLB) = Nr'x(1-x) + NQ (LBO - LAO) x2(1-x)

where

0'EQ EBO .

I
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Most often one finds EBO - EAO << eBo so the mixing enthalpy has the usual
form NQ' x(1-x) that was assumed in Section 4.2, Eq. 4.2.3.

Equations (4.7.18 - 4.7.22) simplify greatly if the kT terms can be

neglected. There are some exceptional cases where gj may also have a
slow x dependence but they are so rare that we have not included this
possibility in Eqs. (4.7.17 - 4.7.22).

E Note that once q1 is deduced by solving Eq. (4.7.15), oin/ ax can be found
from Eq. (4.7.21). Then the miscibility gap, the spinodal curve, and the
critical temperature can be evaluated.

If Aj contains only pair potential combinations, then AF is a symmetric
i function of x about x - 1/2 for a given T. The miscibility critical points

xl and x2, if they exist at a given T, are determined by the condition
aAF/ax = 0 and are related by xi - (1-x2). Similarly, the values of x'l and

I x'2 of the spinodal are determined by the condition o2 AF/3x 2 - 0 and are
also related by x'i - (1-x'2). The critical temperature Tc arises from theEspecial case where x1 - x2 - X'l - X'2 - 1/2 and 2 AF/ax 2 ,0. At x - 112,
the solution for 1 is q-1. This result can be obtained by inspecting Eq.

E (4.7.15) and knowing that interchanging the A and B atoms does not change
the number of AB pairs in a cluster so Aj - An.j, and also gj - gn-j. Using
this il value, one can express lnii/Dx at x - 1/2 explicitly in terms of T.
Eqs. (4.7.19) and (4.7.21) then lead to the following explicit equation for
the critical temperature Tc.

-24A/T 01a+ 4 =0 (4.7.23)| ,4

where for simplicity (eBo"A0)/kTand-Lel have to be set to zero.
kT &x

I
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For the case in which the clusters are pairs, i.e., QCA, we have n - 2, and . I
- z/2, where z is the coordination number. Then Eq. (4.7.23) reduces to
the following simple equation

A,/kT,=- BO +.) (4.7.24)

Comparing Eqs. (4.7.23) and Eq. (4.2.16) we see they are superficially
similar, but in fact are quite different. The reason for the difference is
that the x depencence of the {Aj} set is not properly treated in the
derivation of Eq. (4.2.16). The ratio of the critical temperature to Al for
different EBO/A1 ratios are in Table 4.7.1.

Table 4.7.1 I
Critical temperature for different coordination numbers z, and EBO/A 3
ratios.

z 4 12 3
EBO/Al kTc/A1 kTc/A 1

0 1.44 5.49 1
5 6.90 20.8 3

10 11.9 36.0

15 16.9 51.3 1

As expected, as the ratio EBo/Al increases Tc increases, because EBO I
becomes the proper reference energy.

It is common to find ratios eBO / A1 -10 so theories that do not account i
properly for the x depencence of the energies are inaccurate.

The chemical potential 9B for B atoms in the Al-xBx or AI-xBxC alloy

systems is defined as 3
=- = - (4.7.25)

aNB Nax 3

I
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Then from Eq. (4.7.18) and using the approximation kT 'kT x

the leading terms are

IIB = (1-2x) eBO + n0. I.IBR + kT (1-nQ.) In(x/y) (4.7.26)

where the reduced chemical potantial 9tBR is related to the reduced
activity coefficient il by

ItBR k'TT Inl . (4.7.27)

The quantity IIBR is the contribution to the chemical potential stemming
from the "state of order" of the alloy.

To gain some insight into the behavior of I.tBR examine Eq. (4.7.15) in the
case where J - n and nj - j. Expand Aj in a power series in j

Ai= 8ij i  (4.7.28)
i

As we will see in Sec. 4.9 it is often sufficient to retain terms in this
expansion to j2 . To allow us to obtain a simple analytical form that
displays the major physical trends of ILBR we will also replace j2 j
Then Eqs. (4.7.28) and (4.7.15) become

n

I nx =e-sQkT 7, j gJe-(6+8i)/kTi/Z
j=0

(4.7.29)
nlYe-(S1+nx82)/kT

+ 1e-(t+nx82)/kT

I or

.LR -(81 + nx&) + kT In x/y. (4.7.30)

Therefore, I9BR is of order Ai and has an entropy contribution that
I dominates at high temperatures. This entropy contribution exactly

cancels the kTnQln(x/y) term in Eq. (4.7.26) so it simplifies to

It = O. (I-2x)e13o = n. (81 + nx82) + kT In (x/y). (4.7.31)

The entropy contribution to the chemical potential is only that for aI random alloy. All reference to modifications caused by GQCA have

cancelled out. This result is nearly exact in the temperature limit high
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enough so (Aj) << kT ln(x/y), because in this limit none of the I
approximations used to obtain Eq. (4.7.29) are needed.

Note that the cluster distribution function in Eq. (4.7.12) could have been I
written directly had we used a simple grand canonical ensemble for the
clusters from the outset. Then il is the absolute activity for the B atoms

in this ensemble. The whole derivation can also be done using a steepest
descents argument for the partition function (Sher et al., 1987). While
these methods are more elegant, the essential physics is the same as the
GQCA derived in the straightforward formalism above. These calculations
can be summarized in four steps: (1) calculate the cluster energies £j(n)
and from them the reduced excess energies Ajdefined in Eq. (4.7.4); (2)
solve the polynomial equation (4.7.14) to obtain TI; (3) use '1 and the

energies to obtain the cluster distribution from Eq. (4.7.12) and use this
distribution to calculate all the statistical averaged properties for the
alloy; and (4) in particular, use the set {xj) in Eq. (4.7.3) to obtain the I
mixing enthalpy AE, and in Eq. (4.7.7) to obtain AS, which then enables
phase-diagram calculations and thermodynamic studies. I
4.8 Internal Strain and Cluster Energies

Strictly speaking, QCA and GQCA imply short-ranged interaction energies.
However, the energy models in Sec. 4.6, which are consistent with the

experiments, indicate that strain is the most important contribution to 3
mixing energy in most pseudo-binary alloys. The exceptions are the near
lattice constant matched alloys, e.g., GaAIAs, and HgCdTe. Since the 3
strain energy is shared among bonds throughout the crystal and is
mutually interactive in nature, it can never be separated into isolated
contributions. To write the mixing enthalpy as a sum of cluster energies,
these cluster energies must contain contributions extending beyond the
cluster size. Such an effect has already been included in the energy
models used in Section 4.6. This section is designed to provide a basis for
treating the internal strain energy in alloys (Chen et al.,1987) and 3
obtaining its contribution to cluster energies for insertion into the GQCA
calculation. I

I
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I Consider an alloy divided into M nonoverlapping clusters. In general, alloy
strain energy can be written as the sum of the strain energies of these
clusters, and the interaction among the clusters. Focus on a particular
cluster denoted n, detach this cluster from the alloy, and allow both the

I cluster and the remaining medium to relax. When the cluster is
reconnected to the medium, there will be a change in the energy. ThisU energy change denoted hnm is defined as the interaction energy between
the cluster and its surrounding medium labeled by m. This the total strain
energy of the alloy can be written as

E = , (e + Ih.).(4.8.1)
n 2

Here En is a residual strain energy for the nth cluster when it is detached
from the alloy and is in its equilibrium configuration. The sum in Eq.
(4.8.1) is over all clusters in the alloy. The factor 1/2 is inserted to
eliminate double counting. In an alloy, Eq. (4.8.1) can be replaced by an
ensemble average.

E = M Y, I,(E + 1 h=)PnP', 
(4.8.2)

n m 2

where Pn is the probability that a cluster will be of the n type (e.g.,
specified by the number of A and B atoms and their arrangements) and Pnm

I is a conditional probability that the surrounding environment is in state m
when the cluster is in state n. Note that in Eq. (4.8.1) n denotes the
location of the cluster, while in Eq. (4.8.2) n designates the state of a
cluster. From Eq. (4.8.2), an effective cluster energy e(n) can defined as

1E (n) = Y, (en + 1- h.m) Pnm. (4.8.3)

These energies can be expressed explicitly within the following elastic
continuum model.

Consider a spherical cluster embedded in an elastic medium. The
interaction energy can be written as

hnm =1 n (an - r)2 + 2LVm (bm - r)2 , (4.8.4)

where tht equilibrium radius r is to be determined by minimizing hnm. The
lengths an and bm are the "natural" radii and Iln and vm are the force
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constants of the cluster and the medium respectively. For a macroscopic I
semiconductor cluster of radius R, g. - 12xBR and a good approximation for
v is v= 3.2n(Cll - C12 + 3C 44 ) (Chen and Sher, 1985). The value of r I
corresponding to the minimum value of hnm is given by

rnm = (p1a, + vmbni / (Rn + Vm) (4.8.5)

and the actual interaction energy becomes

hm = I Vm (an - bin)2 / (n + Vm) (4.8.6)

2I
Next cast the average energy into a form in which an and bm are decoupled.
To do this, an effective radius re is introduced such that

I Y pn Prn InVm (an -bin)2 / (j.n + vm) Int m (4.8.7)

= , Pn PmlJ.Vm [(an're)2 + (bm-r,)2] / (;n + vm), (
n m

which imposes the following condition on re: 3
1: N p Pnl.Vm (an-re) 2 (b - r,)2 / (gA + Vm)= 0. (4.8.8) 1

nt R

I
A very quick and important result for the internal strain energy can be
obtained from these two equations by neglecting the correlation between
Pn and Pnm and approximating all the force constants by the concentration
weighted average values g. and v. This result is: re = <an> = <bi>,
<(an- re) 2 > = <(bn- re) 2> = <Ar2 > and

E=M [E+p.v<Ar2>/(P.+v)], (4.8.9)

where . is the average value <£n>.

1
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I Eq. (4.8.9) shows that there are three essential features contributing to
the internal strain energy in this cluster theory: the mean squareE fluctuation of the cluster radii <Ar 2 >, the effective force constants which
are iiv/(g± + v), and the mean strain energy r of isolated clusters.

This result further suggests a way to use the effective medium to obtain
cluster energies in an alloy. For example, if one assumes that the
effective medium has an effective elastic force constant v and radius re,
then replacing the medium by a cluster n introduces a strain energy having
the same expression as Eq. (4.8.6) with vm replaced by v and bm by re. If
all the strain energy is assigned to this cluster, we obtain an effective
cluster energy,

e(n) = r:n + _L nV(an re)2 / (in + V) . (4.8.10)I2
We can see that the alloy mean energy E = M Z Pnec(n) reduces to the result
in Eq. (4.8.9) when the lIn is taken to be the mean value g±. The effective

medium nature enters if we take re to be determined by the condition that

the average energy E be a minimum, i.e.,

I Pn 1nV(an - r.) / (11n + V) = 0. (4.8.11)
n

Application of this self-consistent approach to the elastic constants has
already been considered in Section 3.7.

Let us now apply the general ideas behind Eqs. (4.8.10) and (4.8.11) for the
cluster energies, and GQCA to a systematic discussion of the statistical
properties of pseudobinary alloys AI-xBxC. Because of the special atomic
arrangements of these alloys, the bonds are the natural entities to use for
the energy counting while it is more convenient to count the atoms for the
statistical arrangements. All the bonds in these alloys can be clearly
separated into AC and BC bonds. A convenient way to generate the cluster
is to assign the four AC bonds surrounding an A atom to that atom, and

similarly assign the four BC bonds to the central B atom. In this way the
smallest cluster is a one-atom four-bond cluster. Following the ideas
behind Eq. (4.8.10) we start with an effective medium and replace the

I
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center atom by an A atom, the four surrounding bonds by AC bonds, and I
calculate the interaction energy to obtain the one-atom cluster energy CA.
In a similar way we can obtain LB by replacing the cluster with a B atomi
and its four BC bonds. Note that the mixing energy AE in Eq. (4.7.3) is not
zero, because EA and LB in an effective medium are different from their I
respective values A and Eo in their respective pure constituent crystals.
If the effective spring model of Figure 3.7.3 is used, then i- 6aA, v - 2az,
and we have [following Eqs. (4.8.10) and (4.7.4)]

AA = 30A- (dAc - d)2 = 3aAa (1 - x) 2 eo d2  (4.8.12)
3xA + a 30A + a i

where 80 is (dOc - dec) /d with d being the VCA bond length. A similar
expression can be obtained for AB. When d and all the a's in AA and AB are
replaced by their mean values, the resulting AE is only modified by a few
percent from those based on the actual expressions in Eq. (4.8.12). The
resulting mixing enthalpy is given by a simple expression AE - x (1-x) 3
32d2/2. This is the same result as that given in Eq. (4.6.13) for the
mixing enthalpy parameter. Since each cluster contains only one alloying I
atom and none of the clusters share the same alloying atom, the total
possible ways to arrange the clusters is exactly (o in Eq. (4.2.1), so that
the total mixing free energy in this model is precisely Stringfellow's
preferred form given in Eq. (4.6.2). 3
The next simplest cluster set for the pseudobinary alloy are clusters that
contain four alloy atoms and sixteen bonds as depicted in Figure 4.8.1. 1
This is the smallest cluster size that can provide a meaningful

1
I
i
I
I
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Figure 4.8.1 Schematic picture of a 4-atom, 16-bond cluster in a
3 pseudobinary alloy. This figure shows an A2B2 cluster in a cubic cage.
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description of the local statistical correlations among the alloying atoms. I
Since the results of this sixteen-bond cluster have important implications
to many properties, the results warrant a detailed discussion, which will I
be done in the next section. I
4.9 Sixteen-bond Microclusters

As mentioned earlier, the 16-bond clusters shown in Figure 4.8.1 are the i
smallest non-overlapping clusters that are useful to examine local
statistical correlations of alloy atoms in a pseudobinary alloy AI.xBxC. 5
Each cluster contains four alloy atoms A and B on the vertices of a
tetrahedron. The 16 bonds in a cluster include the four bonds connecting 3
the four alloy atoms to the central C atom, and the twelve bonds
connecting the four alloy atoms to twelve C atoms on the periphery. In the
absence of external stresses, there are five different kinds of clusters
distinguished by distinct cluster energies. These clusters can be labeled
according the the numbers of A and B atoms in the cluster, namely A4 Bo, i
A3B 1, A2 B2 , Al B3 , and A0 B4 , to be labeled by j - 0 to J with J - n - 4,
following the notation in Section 4.7. Each cluster now occupies one cube
in the crystal. Thus the ratio of the number of clusters M to the number of
unit cells (or C atoms) N is M/N - 1/4. Since each cluster shares no alloy
atoms with any other cluster, the total number of alloy configurations 0
in Eq. (4.7.5) for a given set of numbers of clusters (Mi) is exact. Another
consequence of the fact that nQ - 1, as can be seen from Eq. 4.7.16, is that
some entropy terms in the free energy vanish. Any error lies in
approximating the Hamiltonian as a sum of independent cluster I
contributions.

The effective cluster energies can be calculated in a manner similar to 3
what was done for the one-atom clusters in Sec. 4.8. To circumvent the
complicated atomic relaxation that can occur in the medium outside a 3
cluster, the effective spring model results deduced in the single impurity
case can be extended to the present case. To be more explicit, we start I
with a VCA medium and replace sixteen bonds in this medium by a cluster.
The atoms in the cluster including the twelve peripheral C atoms are

allowed to relax, but the atoms in the medium are fixed at their VCA I
sites. To compensate the imposed rigidity, the bond-angle restoring force
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13 in VFF is taken to be zero for all interactions involving those bonds
connecting the peripheral C atoms to the medium. With this

1 simplification the strain energies and atomic positions can be treated
without further approximations in VFF through a minimization of the3 strain energy. These strain energies, according to Eq. (4.8.10), can be
assigned as the strain contribution to the cluster energy.

3l Contributions to the cluster energies from modifications of the chemical
bonds in the alloy can be estimated using the bond-orbital model (BOM) of

I Sec. 2.5 by calculating the changes in the metallization energy of each
bond, i.e, AEb in Eq. (2.5.7), from its pure crystal value (Chen and Sher,
1985). The contributions to Afb due to antibonding states la'> coming from
the same cluster can be treated exactly, while those from the other
clusters are approximated as statistically averaged values in a manner

I indicated in Eq. (4.8.3).

Figure 4.9.1 shows the calculated cluster excess energies as a function of
x in Gal-xlnxAs. For a small x value, the ej energies are larger for larger
j, because a larger j means there are more InAs bonds in the cluster, and
therefore, it is harder to fit it into a medium with a lattice constant
close to that of a GaAs crystal. Similarly, at x - 1/2, E2 for the A2B2

cluster is the smallest energy because this cluster has the best match to
the 50-50 VCA alloy lattice. Clearly, these energies are dominated by
strain. However, it is often misleading to judge the local correlation from
these energies. To do this it is better to look at the reduced cluster
energies Aj defined in Eq. (4.7.4) because it is these energies that drive
the cluster populations, given by Eq. (4.7.12).

Figure 4.9.2 shows the reduced cluster energies Aj for Gal.xlnxAs. By
definition AO and A 4 are zero. The other A'js differ drastically from the Ej
set, not only in magnitude but also in their x dependence. These reduced
cluster energies are all negative and have a weak linear dependence on x.
The three lines are nearly parallel to each other indicating the same x
dependence. Al and A3 are nearly equal and are less negative than A2. The
negative values of the Aj qualitatively imply that A and B atoms do not
like to segregate. These general features of cluster energies are found to
be common in all Ill-V and II-IV alloys with appreciable (few percent)
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lattice mismatches. It is evident from Fig. 4.9.2 that 81 and 82 in Eq. 1
(4.7.28) have opposite signs and are roughly given by 51 = -n82 > 0, so
Ai - 82j(4-j) =--A2j(4-j)/4. Then the energy contribution to MB in Eq.3

(4.7.31) from the state of order is nQ (81 + nx82) A2(1-x). When x is zero

there is a small negative enthalpy contribution to the chemical potential,

i.e., to the free energy when a B atom is added, but when x is unity the
state of order makes no enthalpy contribution to the free energy when an
extra B atom is added. For the lattice-matched alloys such as Gal-xAIxAs
and Hgl-xCdxTe, all the energies are small and the effects caused by {Ai)

are negligible.

The best way to measure the local correlation is to look at the average

values of the cluster population xj - Mj/M against those in a random alloy

x° given in q. (4.7.6) with gj given in Eq. (4.7.15). The average cluster
populations can be calculated from Eq. (4.7.12) after il is determined by
solving Eq. (4.7.14). Figure 4.9.3 shows a plot of MR determined from
11 = eMmsdT for several temperatures as a function of x. These curves were

determined numerically and have none of the approximations inherent in
Eq. (4.7.28). The shapes of the curves are just what would be expected 3
from the trends predicted by Eq. (4.7.28). The reduced chemical potential

for B atoms MBR is large and negative for small x and large and positive
for large x because of the entropy terms, and small near the center of the
x distribution where the A1's are influential. Figure 4.9.4a and b show I
plots of the deviations from randomness, xj - x° for different clusters as a
function of alloy concentration x at equilibration temperatures of 600K
and 1500K respectively. These two sets of curves are similar in shape but
different in magnitude. As expected from the fact that Al, A2, A3, < 0 and
A - A4 - 0, the j - 1, 2, 3, cluster populations, where they are large, are
seen to be enhanced by the Aj, while the j - 0, and 4 populations are

reduced. For referfence the random populations xO} as a function of 3
concentration are in Fig. 4.9.4c. These cluster populations are seen to be
sensitive to temperature. For example, at x = 0.54, the deviation

decreases from 25% to 5.5% at T increases from 600 to 1500 K. For a
given sample, the actual temperature to be used to calculate the cluster
population depends on the "last" temperature Tf at which the alloy atoms
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cease to diffuse. If Tf is larger than the sample temperature T, then the
alloy is in a metastable state, and Tf instead of T should be used.

After the cluster distribution is calculated, the alloy mixing enthalpy is
determined from Eq. (4.7.3). Figure 4.9.5 shows AE as a function of x for
Gal.xlnxAs at four temperatures; T = 300, 600, 1000, and 1500 K. The AE
is seen to be dominated by the T-independent part given by the first two
terms on the right side of Eq. (4.7.3), which can be attributed to the strain
energy. The T-dependence is seen to be very weak, because the Ajs are
small. AE increases with T because that promotes increases of population
of clusters with higher energies. The curves in Fig. 4.9.5 indicate that the
approximation AE = x(1-x)Q with a constant positive Q, such as that used
in Sec. 4.7, should not introduce much error in the free energy calculation.
However, a positive value of 0 does not necessarily imply
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Figure 4.9.3 Reduced chemical potential BR as a function of

concentration x for several temperatures T - 300, 600, 1500 K in the
alloy Gaj.xlnxAs.
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that A and B atoms repel each other microscopically. This is evident from U
Figure 4.9.5 which shows enhanced population for the A2 B2 clusters
relative to those of a random alloy.I

The total mixing free energy , AF, can then be calculated from AE - TAS
with AS given by Eq. (4.7.7). The results for Gal-xlnxAs are shown in I
Figure 4.9.6. These curves show that this alloy has a miscibility gap at
low temperature. These results are similar to those based on pair-3
potential QCA. Therefore, it is not surprising that replacement of the
pair-QCA AF for pseudobinary solid solutions by the present GQCA results
produce mearly the same phase diagrams as those shown in Fig. 4.5.4
(Patrick et al., 1987). This also shows that the phase diagrams are in the
class of phenomena that are rather insensitive to details of the short I
range order statistical distributions. Effects sensitive to their local
environment, e.g., vacancy formation, are more sensitive to the shortI
range order state, than those like phase diagrams that are related to
average properties. 3
A byproduct of these calculations is the bond length distribution in alloys.
Figure 4.9.7a shows the bond lengths from the central C atoms to the four
alloy atoms as a function of x for all five clusters considered. The
spreads in the lengths of the same kind of bond in different clusters are
found to be small. Figure 4.9.7b shows their average values, and the rms
widths about the mean of Ga-As and In-AS bonds over the cluster
populations. The calculated result clearly supports the bimodal bond I
length distribution revealed by EXAFS.

Besides Gal.x InxAs, the above studies have been carried out for several i
other pseudobinary alloys, including Gal-xlnxP, GaAsl.xSbx, Hgl-xCdxTe,
Hgl-xZnxTe, Cdl.xZnxTe and ZnSel.xTex (Patrick et al., 1987 and 1988). 3
Among quantities that can be checked accurately against experiment, the
bond lengths and the phase diagrams from the 16-bond cluster, 3
generalized QCA calculations compare favorably with experiments. As
further evidence, Fig. 4.9.8 shows the liquidus-solidus curves for three II-
VI pseudobinary alloys based on the 16-bond GQCA calculations for the
solid phases (Patrick et al., 1988). Agreement between the predictions

and the experiments are very good. The effective mixing enthalpy
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parameters nQ16 for completely disordered alloys, i.e. random alloys, I
derived from the present 16-bond model for a number of systems are
listed in Table 4.6.2. These are seen to be in accord with the experimental I
values and with those from previous estimates. However, the attractive
interactions between the alloy atoms, and the associated changes in the
cluster populations found from the calculations, have not been clearly
demonstrated experimentally. 3

4.10 Cluster Variational Method 3
The mixing energy models and statistical methods discussed so far have
provided an adequate description of local correlation and phase diagrams I
in pseudobinary semiconductor alloys. All the results in these models
were obtained without relying on heavy computations. However, modern
computers do enable sophisticated calculations, and more rigorous
calculations should be considered. This section will discuss an improved
statistical theory, and the next section will review recent efforts to
combine this statistical method with first-principles LDA calculations
for semiconductor pseudobinary alloys.

A statistical method first proposed by Kikuchi (1951) which improves

GQCA by incorporating some statistical correlation between clusters, is i
referred to as the cluster variational method (CVM). Like GQCA, CVM
divides a crystal into clusters which are chosen to contain all the i
important interactions. There are several approaches to obtain the CVM
cluster configurations. The method we shall consider is perhaps the
simplest one. Unless specified, we shall ignore the spectator C atoms in
the pseudobinary AI-xBxC alloy, then the statistical counting is the same
as that in the binary Al-xBx. We will use a familiar notation. There are N
lattice sites equal to the number of atoms N - NA + NB. M is the number of
basic clusters in the crystal. For example, if the clusters are pairs, then i
M - zN/2, where z is the coordination number. If the basic cluster is a

square, then M - N in a square lattice, but M - 3N in a simple cubic lattice. 3
The quantity of interest is the number of ways, 0, of arranging the A and B

atoms on the lattice for a specified set of the numbers of different types 3

I
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of clusters {Mj). If these clusters were all independent, then the answer
would beSbg(M') 

= M!/[ l M!] , (4.10.1)

where the index s labels the basis cluster being used, e.g. pair, triangle,
square, etc. However, these basis clusters in a crystal share subclusters,
e.g., squares may share pairs. Therefore, the counting g(M,s) has to be
modified. The subclusters can also share further subclusters, and further
corrections have to be made until reaching the final smallest subclusters
- the single-atom clusters to be referred to as points. The ways
systematic corrections are made can be best understood by going through
several examples.

Consider the simplest case in which the basis clusters are pairs. Then M -
zN/2, and the uncorrected 0 is given by g(M,pair) in Eq. (4.10.1). These
pairs share points. The M independent pairs would contain 2M points,
whereas there are only N points in the crystal. A logical way to correct
g(M,pair) is to normalize it with ratio of point arrangements as follows

3 = g(M,pair) [g(N,point) / g(2M,point)], (4.10.2)

where g(N,point) following the definition of Eq. (4.10.1) is the number of
random configurations 0o in Eq. (4.2.1) . Using the Stirling
approximation InN! - NInN - N, the mixing entropy AS - kInO becomes

AS = -NkEcj ncj - MqThjyjInyj - 2,cjlncj] , (4.10.3)

where for latter convenience the notation cl and c2 stand for fractions x
and (1-x) respectively, yj - Mj/M is the pair probability of cluster type j,
and hj is the degeneracy of cluster type j. Note that in the above notation,
Mj is the number of clusters of the type identified by specifying the
arrangement of A and B atoms in the cluster, it does not include other
types with the same cluster energy. Thus hjyj is equivalent to the cluster

In terms of the logic used to get Eq. (4.7.5), 0 equals the number of arrangements of the NA
and NB atoms on the N sites, g(N,point) times the fraction of those arrangements
g(M,pair)/g(2M, point) corresponding to the pair arrangements.
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population xj in QCA. With this understanding, then the CVM is exactly the I
same as QCA in the pair approximation.

Next consider square clusters on a square lattice. Let M now be the total

number of squares in the crystal, then M - N. The number of pairs in the

crystal is actually L - 2N. If all the M squares were indrpendent, e.g.,

separated from one another, then the total number of pairs would be 4M

and the total number of atoms (points) would also be 4M. The first 3
correction to g(M,square) comes from the following pair normalization
factor 5

fpair = g(Lpair) 
(4.10.4)

g(4M,pair) (0I

However, both the denominator and numerator of this factor have to be

further corrected with point normalizations in a form similar to that
inside the bracket of Eq. (4.10.2). Explicitly, the corrected 4) takes the

form

r = g(Msquare) g(Lpair) I jg(SM pint ) , (g(2Lpoint)) . (4.10.5) I= g(~squre) g(4M,pairl g(4Mpoint)) V g(Npoint)

In this equation the first bracket is the pair normalization, the second 3
bracket is the point normalization to correct g(4M,pair), and the last
bracket is to correct g(L,pair). The associated mixing entropy becomes 3

AS = -k(8M - 4M - 2L + N) ,cj lncj + (L. - 4M) Zhjyj lnyj + Mlgjzj lnzJ] (4.10.6) 1
= - kN( Tej Incj - 2 7-hjyj Inyj + Y-gjzj Inzj) , I

where yj and zj are respectively the pair and square probabilities, and hj
and gj are their respective degeneracies. I
Now it becomes straightforward to write down the expression for AS for
square clusters in a (3-dimensional) simple cubic lattice, for which M -
3N, L - 3N, and the expression for 0 in Eq. (4.10.5) is still valid, so

AS = -kN (72,cj Incj - 9 1Thjyj Inyj + 3 gjzj inz) . (4.10.7) 5
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I As a final example, consider the tetrahedron clusters in a fcc lattice.
There are a total of M - 2N tetrahedral clusters, and L - 6N pairs in the

I crystal, and there are 6 sides and 4 atoms in a tetrahedron. Eq. (4.10.5)
has to be modified slightly for the present case to read

0= g(Msquar) (g(L'pair) g(12M'point) I g(2Lpoint) (4.10.8)
s (M,pairl J g(4M,point) g(N,point))

The entropy is then given by

AS = -kN (52cj lncj -61Zhjyj lnyj + 2 Lgjzj lnzj) . (4.10.9)

Up to now we did not have to distinguish between binary and pseudobinary
alloys. However, for the tetrahedron case there are two different kinds of
tetrahedra in pseudobinaries, one contains a central C atom, and the other
is empty. If the energies are assumed to be associated only with bonds,
then we can ignore those tetrahedra without a central C atom. Then M - N
should be used in Eq. (4.10.8) to give

AS = -k (- 3 cj lncj + Fgjzj Inzj). (4.10.10)

Note that the pair contribution disappears from this expression. This is
understandable, because the clusters treated this way share only points.
It is important to point out that Eq. (4.10.10) is exactly the same as the

GQCA result in Eq. (4.3.7) for the case of tetrahedra with the
identification of xj with gjzj. This example demonstrates that alloy
statistics for pseudobinaries are not necessarily identical to that for

binaries.

It is useful to observe a rule that governs the coefficients in front of the
summation signs inside the brackets for all CVM expressions for AS: If we
multiply each coefficient by the number of atoms in the cluster that term
represents, and sum up these products, the result is one. This rule is
useful for checking if the configurations are properly normalized.

The equilibrium values of cluster probabilities such as {yj) and {zj) are
determined by minimization of the mixing free energies in a manner
similar to GQCA. Likewise, not all cluster probabilities are independent.

Since there are more variables to be determined and more constraint

I
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conditions to be satisfied in CVM than in GQCA. Kikuchi (1981) worked i
with the grand potential * = F - TIgjN j, and designed an iterative procedure,
the so-called "natural iteration method", to attack the problem. I
Impressive results have been obtained from CVM with small clusters. For
example, Table 4.2.1 shows that CVM predicts critical temperatures very
well for the square lattice using square clusters, and for the fcc lattice
using tetrahedron clusters. There are also examples where CVM obtains
correct phase diagrams, whereas the Bragg-Williams approximation fails
quantitatively (Kikuchi, 1974). This method has recently been
incorporated in the phase diagrams studies of semiconductor alloys using I
energies derived from ab-initio LDA calculations. The results will be
discussed in the next section. i

4.11 Ab-Initio Calculations i
Because self-consistent LDA has been successful predicting the structural
properties of ordered semiconductors, it is desirable to attempt to apply
this ab-initio theory to alloys. There are several challenges in such an
undertaking. First, the mixing enthalpies in semiconductor alloys are i
typically of order of 1 Kcal per mole or 1/23 eV per atom, but the total
energies i.e., each term on the right side of Eq. (4.7.2) are many orders
larger. Very precise and accurate numerical calculations are required to
get meaningful results. However, if carried out precisely, LDA has been
demonstrated to be able to predict changes in energies correctly, despite
its larger error in predicting total energies. The next, and more
challenging difficulty, is alloy disorder. To compute the total energy of i
an alloy quantum mechanically one needs to solve the Schrodinger equation
for a Hamiltonian which does not have lattice translational symmetry, I
which is so indispensable in the traditional band-structure theory.
Finally, to use a statistical theory such as CVM, the excess energy has to
be composed of short-ranged multi-site correlation energies, including
only the single-site, pair, etc., up to a manageable cluster size containing
only a handful of sties. To circumvent these difficulties, Connolly and
Williams (1983), working on metal alloys, proposed that these multi-site
correlation energies be deduced from ordered systems that are composed I
of the same atoms. This scheme allows a direct application of the first
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principles theory in the calculation of the energy parameters. This theory
has been extended to semiconductor alloys, including considerable
refinements, by Wei et al. (1990) and Ferreira et al. (1989) (to be referred
to as WF), and respectable results have been obtained for the phase
diagrams and alloy equilibrium properties. Their main results are
summarized below.

The cluster excess energies in WF are calculated as a function of relative
cell volume. Figure 4.11.1 shows an example for Ga4AsnSb4-n clusters.
These energy curves are similar to the x-dependent excess energies shown
in Fig. 4.9.1, because the alloy cell volume was scaled linearly with x. The
overall implications to these excess energies are also very much in accord
with what we learned from Sec. 4.9. The magnitudes of mixing enthalpies
are generally dominated by terms driven by lattice constant mismatches.
For the lattice-matched alloys, the excess energies are very small,their
effects fall within calculational uncertainties, and therefore may be
neglected. For lattice mismatched systems, AE is positive and as we have

seen in Sec. 4.9 is dominated by a temperature independent strain
contribution. The reduced excess energies that govern the atomic

I statistical correlation are small and negative. This implies
anticlustering, as shown in Figure 4.11.2 for the deviation of cluster
populations from random-alloy values. These curves are qualitatively the
same as those obtained in Sec. 4.9. The mixing enthalpy parameters Q for
random alloys (at T - -. ) were calculated and are listed in Table 4.6.2,
where they can be compared with previous estimates. The miscibility
gaps and spinodals are also calculated and are shown in Figure 4.11.3.
These curves display considerable asymmetry about x - 1/2, a behavior
also found from the experimental data for GaSb.xAsx. The calculated
critical temperatures, indicated as TMG, and the concentration XMG where
the bimodal curves peak, are tabulated in Table 4.11.1. For systems for
which experimental data are available, the agreement between theory and
experiments are good. Finally, the predication of the bimodal bond length
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distributions are similar to those predicated from the 16-bond cluster
model in Sec. 4.9. However, we should note that in order to produce the
kind of accuracy in the energies required for the phase diagram
calculation very detailed and careful computational efforts are needed.
The results presented here represent the state of the art in the LDA
calculations.

Table 4.11.1

Calculated critical temperatures TMG for the binodal and spinodal curves
and the corresponding compositions XMG compared to experiments.

System Theory ExperimentTMG(K) XMG TMG(K) XMG
All.xGaxAs 64 0.49

lnl-xGaxP 961 0.676 933 0.62

Inlx.Ga;As 630 0.77

GaAsl-xPx 277 0.603

GaSbl.xAsx 1080 0.595

Hgl-xCdxTe 84 0.60

HglxZn; 455 0.56

Cd!.xZnx 605 0.623

After Wei et al. (1990)

However, the Connolly-Williams approach is only a kind of interpolation
between ab-initio energies of the ordered systems and alloys. The multi-
site correlation energies deduced from this approach represent
interpolation parameters for the total energies. They depend on the
ordered systems chosen in the parametrization. The volume dependent
cluster energies are unlikely to be sufficient for calculating alloy
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properties ;ensitive to the cluster shapes, e.g., shear moduli and lattice I
vibrations. These are fine points that require improvements. A different
way to approach the ab-initio calculation is to attack the disordered U
problem directly. If the fluctuations of the alloy potentials from their
virtual crystal approximation (VCA) is small, then the next leading
correction to VCA can be obtained from perturbation theory. This should
work for most semiconductor alloys except for systems with large 3
potential fluctuations such as Hgl.xCdxTe (Spicer et a., 1982). A more
general but more difficult approach is to extend an effective modern alloy
theory, the coherent-potential approximation (CPA) (to be discussed in
Chapter 5), to clusters and to achieve triple self-consistency: consistency
between the cluster distribution and the Hamiltonian, between the
Hamiltonian and the electron density, and between the self-energy
operator I in the cluster CPA theory and the potential fluctuations.

Currently this theory has been carried out only for metal alloys, and only
within the single-site KKR-CPA (Gyorffy and Stocks, 1979) with a random
distribution. There is also a theory developed along with CPA, the so-
called generalized perturbation method GPM (Ducastelle and Gautier,
1976), which is intended to systematically calculate multi-site I
correlation energies from the CPA results. However, to use GPM in
semiconductors, it needs to be extended to include total energy 3
contributions form other than the band structure term in EQ. (2.2.13) and
to allow lattice distortions. Major work is needed if this approach is to i
achieve the same degree of rigor for disordered alloys as self-consistent
density functional theory now enjoys dealing with crystalline
semiconductors.

FU
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Abetract. We review the current status of knowledge of fundamental properties of
the alloy Hg, - ,CdTe. The most vexing questions are about its correlation state.
Several different experiments now suggest it is highly correlated, but no theory
predicts this result. We also discuss other properties, including dislocations at
interfaces, the residual donor, worms, surface segregation and its impact on
passivation, and concentration fluctuations. The forces driving these phenomena,
where they are known, will be presented. Most of the paper focuses on the
following: correlations; native defects, formation enthalpies and entropies; native
defect equilibria with mercury gas and with tellurium inclusions; and self-diffusion
coefficient activation energies including its contribution from migration energies.
We will take advantage of new first-principles, high-accuracy calculations to help
explain the experimental situation. The calculations predict that the main nativedefects found in alloys equilibrated at low Hg pressures are Hg vacancies, while at
high Hg pressures they are Hg interstitials, and, surprisingly, Hg antisites.

1. Introduction blow-up of a 'microcluster'. The major topics identified
are point defects [2], correlations [3], 'worms' (5], misfit

As we have been told in this conference [1], sophisticated dioslocations [6, 7], substrates, extended defects [1],
focal plane arrays (FPAS) of sizes as large as 256 x 256 inclusions [7], bulk concentration fluctuations [8] and
elements have been demonstrated on Hg1 _=Cd.Te ma- surface segregation [9]. Other topics such as metalliza-
terials grown epitaxially by several means on various tion [10], particularly to p-type material, could have also
substrates. Control of the material and its processing is been included in this fist, but we limit our discussion to
reaching a stage where practical yields of arrays with those mentioned above. We begin by summarizing below
adequate performance for some applications are nearly the most important aspects of each of these topics. A
at hand, so these array costs are becoming acceptable. selected set will be greatly expanded upon in later
While the community is now well into'a manufacturing sections of the paper.
phase, there remain many unanswered questions about
the nature of Hg _CdTe alloys, questions whose reso- 1.1. Point defects
lution would improve the performance, yield and stabili-
ty of focal plane arrays. The purpose of this paper is to Most H8 _,Cd.Te alloys are Te rich as-grown [1, 2].
review the current status of our knowledge of this alloy The excess Te is accommodated by Hg vacancies (desig-

system [2, 3], with the aim of suggesting potential nated VHS) or as Te solid inclusions (Te,) [7, 11]. The Hg
mechanisms for the uncertain properties and additional vacancies are shallow acceptors (possibly negative-U-
experiments to test these hypotheses. We also will dem- centre double acceptors) [12]. With the exception of
onstrate the merit of recently developed first-principles some MBE or MOCVD material, as-grown material is p-
computational methods [4] to help settle outstanding type, both at room temperature and at 77 K [13, 14].
problems associated with the material which will even- This material can usually be annealed at low temperature
tually lead to accurate processing and performance (- 250 'C) in an Hg overpressure to fill the VHS sites and
models. Figure I depicts schematically the major issues to dissolve the Te inclusions [7]. When this is done the
that will be addressed. They were selected because of material converts to n-type with carrier concentrations
their potential impact on performance of FPAs. The figure that are remarkably low, from a few times 1014 cm - 3 to a
shows a passivated HgCdTe sample on a substrate. On few times 101s cm -3 in high-purity material [14]. The n

the right is a graph of a vertical composition profile dopant(s) (called the residual donors) are unknown.
through one region of the sample, and on the left is a There is evidence [14] that the principal residual donor isS t This work was supported in part by NASA Contract NAS I- 18226, an impurity rather than a native defect, but because it is
ONR Contract N00014-88-C-0096, and AFOSR Contract 49620-88- so pervasive the evidence in not completely convincing.
K-0009. The residual donor concentration is unknown, uncon-
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Figure 1. Schematic features of HgCdTe alloys. I

trolled, and sets FPA limits for most operating modes. there is a degree of short-range order, and in some cases
Identification and control of the residual donor would even long-range order [20, 21]. The principal driving
undoubtedly be beneficial. It has been demonstrated by terms for correlations are bond length and chemical

diffusion measurements that samples annealed in higher difference between the constituents AC and BC. In
Hg pressures contain Hg interstitials (Hg) [15, 16], but Hg,-.CdxTe the bond lengths of HgTe and CdTe are
while they are likely to be donors, the electrical state of nearly equal, and the differences in their chemical terms
an H& has never been directly identified. It has been are also small, so that correlations are predicted to be
speculated that Te interstitials (Tel) and antisites (TeN,) small. However, a high degree of correlation has been
[17] are active recombination centres, but direct evi- deduced using five different experimental techniques (Te £
dence on their deep states is not available. The Hg nuclear magnetic resonance (NMit) [22], Raman spec-
antisite (HgT,) has not been previously suggested as a troscopy [23, 24], infrared (IR) reflection spectroscopy
high-concentration defect, but we will present arguments [25] and x-ray diffraction [26]). In the concentration
in a later section that it may be present in concentrations range near x = 0.25, the correlations are such that the I
sufficient to affect devices [2]. material is tending toward an ordered structure rather

So far we have mentioned only native defects, but than spinodal decomposition. Those findings may have
impurity doping is now being brought under control in important consequences for devices, in particular if the
HgCdTe alloys. It has proved to be difficult to gain correlation state varies spatially. Such correlation fluc- I
control of both donor and acceptors, but methods are tuations may be a source of spatial variability of material
now in hand. Well behaved impurities are In [18] on properties that occurs even if the composition is uniform,
cation sites serving as donors, and As on Te sites serving with the variation affecting the uniformity of the band-
as acceptors. They are inserted into the material during gap, native defects and impurity concentration, mobili-
epitaxial growth. Ion implantation and diffusion doping ties, etc. The magnitudes of such variations may differ
have not been successful enough to be used in any greatly from one property to another. For example, one
manufacturing process. Partial explanations for these would expect relatively slight bandgap variations, but I
observations have been published, but refinements are rather more substantial differences in vacancy concentra-

needed to make them quantitative. Many devices are still tions and diffusion coefficients between regions of differ-
made utilizing VH, acceptors and residual donors [19]. ent correlation states. This occurs because band

structures are properties that depend on site occupations I
1L Correlation averaged over many lattice spacings, but vacancy for-

mation energies depend sensitively on the local atom
It is now well recognized that semiconductor alloys of the arrangement around the vacant site. Both the experi-
form A, _,B C are rarely truly random. The A and B mental and theoretical understanding of the correlation I
atoms do not occupy their sublattice in the zinc blende state of HgCdTe need to be clarified. A more detailed
structure at random but are somewhat correlated, so exposition of this problem is presented in section 2. 1

C11ceG G-2 I
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1.3. 'Worms' does not exist for Hg, -CdTe, so compromises must be

M a gmade. The materials CdZnTe. and GaAs or Si with bufferMaterial grown by LPE and MOVPE and annealed to n
type often exhibits low carrier concentrations - 1013 layers, are the current leading contenders.

cm- ' but with electron mobilities far below those of bulk
----I, or MBE-grown materials. If these materials are intention- 1.6. Extended defects

ally impurity doped to be slightly more n type, their A variety of extended defects, grain boundaries, anti-

mobilities return to the high values obtained by other phase boundaries, twin planes, threading dislocations,
growth methods. The currently accepted, although un- striations, etc have all been directly observed in transmis-
confirmed, explanation for this phenomenon is that after sion electron microscope (TEM) studies or their existence
the Hg overpressure anneal, there are 'woodworm-like' deduced from indirect evidence. Their impact on device

domains in the n-type material that remain p type [5]. characteristics is not well established, but is certainly
These regions produce p-n junctions, and mobilities never helpful. Because large-area FPAS are being made,
measured in a Hall measurement exhibit a mixed effective extended defects obviously are relatively dilute or ineffec-
mobility that appears low. Impurity doping converts tive in current device-grade material. However, improve-
these p-type worms to n type, so while there is still a ments are still possible.
spatial variation of the doping concentrations, all the
material is n type so the measured Hall mobility is higher. 1.7. Inclsikm
From the viewpoint of device limits, such impurity
doping has two potential deleterious effects. First the We have already mentioned Te inclusions, and they will
minimum carrier concentration that can be used is be analysed more extensively in later sections of this
increased, and second there is a spatial variation of the paper. They always have an array of dislocations around
carrier concentration. them [7], are thought to serve as getters for some

The worms are an appealing explanation for the impurities, and, as we suggest later, are likely to have a
observed transport properties, but if the goal is to non-equilibrium atmosphere of VH, and TeH, around
improve devices made from LPE material then we must them [2]. When they are dissolved in the Hg anneal,

understand why the worms form and how to eliminate some of their associated dislocations climb to surfaces
them during growth, or in subsequent processing. Do the [7] and are eliminated, although some remain; the
worms form because they correspond to regions of low gettered impurities may remain as inclusions, and the
residual donors, or to regions where the V,, formation larger Te, inclusions may not be completely dissolved.
energies are small so that they do not anneal completely? Means to avoid Te, inclusion formation in as-grown
Are the worms regions where the correlation state differs material are most desirable.
from the remaining material? Why are worms more
prevalent in LPE or MOVPE material than in higher- 1.8. Blk concentration fluctatiom
growth-temperature bulk material or lower-growth-tem-
perature MBE material? These and other questions are Even if an alloy is random, any segment in space has a
still unanswered. Bernoulli probability concentration distribution [30].

Thus one expects small-scale concentration fluctuations

if there is nothing to suppress them. Because of the near
1.4. Misfit dihlocatious lattice match between HgTe and CdTe, a region of space

Substantial misfit dislocation densities are always found with a concentration that differs significantly from the
atahenteface misftwisocatin Hgensite aw ond average produces no long-range strain field and is there-
at the interface between Hg_ CdnTe and substrate fore not strain suppressed. The same effect has beenmaterials, e~g. Cd1 _.,Zn,Te, even when the two materials fud i h atc-ace lo l
are perfectly lattice matched [6, 7]. This situation also [31]. However, in a lattice-mismatched material like

occurs to a lesser but still significant extent at heterojunc- Hg1  Howe, sc short-ang e ati lta
tions. The reasons for these anomalous dislocation Hg, _,nTe, such short-range concentration fluctua-

itis.T reasns or etesed. an us dislocations tions are suppressed. One consequence of this is that in
densities remain to e determined. Because dislocations HgCdTe the exciton line is very broad, while in HgZnTe
have been demonstrated to have a deleterious impacton it is narrow [8]. This effect should be particularly

minority carrier lifetimes, their effect is of particular troublesome in VLWIR material where the bandgap is very
concern at heterojunctions where they degrade 2 9A small and fluctuations could produce semi-metal short-

products [27-29]. ing domains.

1.5. Substrates 1.9. Surface segregation

This topic has been extensively reviewed in other confer- In general, an alloy in equilibrium will not have a
ence papers [i]. The ideal substrate material would be a uniform concentration near an interface [9]. This is most
large-area, IR-transparent insulator that is matched to easily understood at a vacuum surface where there are
the active layer by lattice constant, thermal expansion dangling bonds. The material can minimize its free
coefficient and chemical potential, and on which signal energy by having the alloy species that makes the weak-
processing circuitry could be integrated. This idealization est bonds concentrate at the surface. Also in lattice-
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mismatched alloys the low-concentration species will be tion on those aspects that may help us to identify what
driven to the surface by 'strain release' because they may be missing from the interactions driving correlations
experience less strain energy at the surface than in the in HgCdTe. We consider an average population i of
bulk. In the near-lattice-matched Hg, -_Cd.Te alloy, five-atom anion-centred clusters including 16 bonds
strain release plays little part, and therefore surfaces are (most others treat four bonds only). The population of I
Hg rich, because Hg makes weaker bonds to Te than five-atom clusters of the form A4 ,B.,C can be shown to
does Cd. Detailed predictions are that for x < 0.4 the be grand canonical ensembles of the form
surface layer will have concentrations in the semi-metal = g exp[(panJ - es)/kT /q({[J}, pn) (1)
range returning to the bulk concentration within a few -
atomic layers. Thus, in equilibrium, MWIR and LWIR where the partition function is

HgCdTe alloys will have Hg-rich semi-metal surfaces. A J
CdTe-passivated HgCdTe alloy will have a uniform q({tj}, ,u) = , gj exp[(pgn j - ej)/kT] (2)
concentration up to the interface because, both in the j-0
bulk and at the interface, cations will be surrounded by and gj is the degeneracy of clusterj = 0, 1. J (4 5 J
four Te atoms, so there is no driving force for segregation. 2'), nj is the number of B atoms on cluster j, tj is the
There is also little driving force for segregation at a ZnTe excess energy of cluster j relative to the virtual crystal
interface with HgCdTe. These conclusions are true only if approximation (vcA) average =VCA (1 - X)CA + X&B
interdiffusion is prohibited across the interface. (called Aj by Sher et al [21]), CA and c. are cluster

Because there is less tendency for interdiffusion be- energies of the pure AC and BC compounds, k is the
tween ZnTe and Hg, _,Cd Te than between CdTe and Boltzmann constant and Tis the absolute temperature. I
the alloy, we have suggested that a few atomic layers of If the clusters do not have their normal counting
ZnTe followed by a thicker CdTe layer should be a degeneracies
superior passivant.

A CdS/HgCdTe interface should be Cd rich because _ (4= (
the CdS bond strength exceeds that of HgS by more than nf - J
that between CdTe and HgTe. A similar argument ap-plies to oxides, except that the lattice-constant mismatch split, then we have g1 = g the binomial coefficient, and
beloes o xideexce that thesloattie-onstan mi dars J = 4. The chemical potential is set by insisting that the
becomes so large that dislocations and grain boundaries compoition x is correct
begin to exert a much larger influence on the net result.

The rapid return of the interface concentration to its 4x -- -!i ij. (3)
bulk value (a few atomic layers) is predicted to occur only I
above an alloy's order-disorder transition temperatures If one makes a transformation to the reduced excess-
[3, 32]. Below this temperature, long-range large-excur- energies representation
sion concentration oscillations should occur. Because of
its expected low order-disorder temperature, one would A = e - I - ! o - !iej (4) S
tend to discount such phenomena from consideration in 4) 4

HgCdTe. However, the observations of large correlation (called A' by Sher et al [21]) then xj becomes
effects makes us pause. If these effects are confirmed, then
there may be comparatively long-range concentration x = gj exp[(/,n, - Aj)kTJ/q({Aj}, A6) (5)
fluctuations adjacent to an epitaxial layer-substrate in-
terface, which may help to explain the anomalous misfit we
dislocation densities that are observed. This suggestion A = p. - (j - eto)/4. (6)
(first made by Spicer et al [10], but without a mechanism Note that we have Ao = A, = 0, so at least two
identified) is highly speculative, and while concentration members of the set {A,} vanish. More importantly, only
oscillations driven by surface segregation and interface the reduced excess energies actually drive the cluster
boundary conditions are a natural consequence of a populations. We shall see shortly that the energies of thehigher than expected order-disorder transition tempera- {A,) set are often five to ten times smaller than those of

ture, there is no direct evidence to support its occurrence the {&j set. Most of the strain contribution to the {eJ} set
at a HgCdTe/CdTe interface. Relevant experiments subtracts out and contributes little to the ij values.
would be helpful. There is an additional effect. It can best be appre- I

The remainder of this paper will be devoted to an ciated when stated as a theorem: If
exposition of our current understanding of correlations,
native defects and their diffusion. A, = Ao + n5 and gj = 4

2. Review of correlatlnd then J = 4 and
Y = g I - 4 - )Xn) j 7

We [21] and others [33-35] have demonstrated that x J( Y (7)

there are always correlations in alloy semiconductors. where x1 are the populations of a random alloy. Thus, no
Here we summarize our previous work, focusing atten- matter how large the constant 6 may be, as long as the 3
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energies A, vary linearly with the number of B atoms on temperature independent. For bond-length-mismatched
the cluster nj and the counting degeneracy is not split, the alloys, they vary with x roughly as to % &:x and ej : zo
alloy is random. Strain energies from bond-length differ- (1 - x)2, so that we have
ences between the constituents, chemical energies and
electron-electron interactions all have some nonlinear A(1 N x(I-x)+ YAJ (3)
variations with nj. The degeneracy g9 is split by coherent /
strains, temperature gradients, or anything that estab- where the mixing enthalpy parameter, Di is approxi-
lishes preferred directions for the locations of A and B mately
atoms on a cluster. These splittings always establish a ( - [4 + (to - 4)xJ/4 (14)preference for one type of cluster in a particular orienta-

tion [e.g. for a strain in the (11) direction, A3B with the and nearly x independent if 4g % c°, as is often the case.
B oriented along the (111) axis], and therefore drive The second term in equation (13) is usually small com-
deviations of the {fi} set from {x5'} toward compound pared with the first and contains all the temperature
formation, and, if the splittings are large enough, toward dependence. However, when equations (5), (12) and (13)
long-range order. The effect of the energies {Aj) can drive are inserted into equation (8) to obtain AF, a term in TAS
the {if} set toward either compound formation or spino- exactly cancels the second term in equation (13). Thus, it
dal decomposition, depending on details, is impossible to determine the temperature variation of

The excess free energy of an A _B.C alloy can be AE from a measurement of AF. The expression for AF
written as becomes

AF = AE - TAS (8) AF = N[ x(l - x) + xu6 -k kTln q({Aj), #6)]. (15)

where the excess energy is The chemical potential p6 is determined from equa-

AE = MYIej fcj (9) tion (3), and both p6 and q are generally temperatureAE=M J(9 dependent.
We have calculated {A}, Aj}, p6, {i1 - ), AE(7)

with M being the number of dusters. The excess entropy and AF(T) for Hg, _.Cd.Te (figure 2) and Hg,- .aZnTe
is (figure 3) alloys. The energies ej for these figures were

N! ' M! calculated as discussed in detail in [21]. The 16-bond
AS = kin K . 1J-[X - x)4 -.JX.]jhJ) (10) cluster was attached to a rigid medium at the virtual

NA !N83  J- crystal positions in the third shell from the duster centre.
with Mj = xjM (see Sher et al [21] for the justification). The atom positions inside the third shell were adjusted to
The total number of clusters M is related to the number minimize the strain and chemical energies. The energy ej

of Bravais lattice sites N in the crystal by M = N/4 for a is the total energy of the 16 bonds with the atoms in their
16-bond cluster (and M = N for a four-bond cluster). minimum-energy positions. The variations of atom bond
Equations (9) and (10) can be rewritten for the 16-bond lengths in different alloys are well predicted by this
cluster as method. The AF curves for Hg,.Cd.Te show no tenden-

N cy for an order-disorder transition in the temperature
AE =- 4 (1 - X) 6o + xJ + (11) range studied, but .c, - xo values do deviate from zero.

i Hg, _.Zn.Te does have an order-disorder spinodal tran-

and sition with critical [36] temperature T a 380 K. Al-
though Hg, _,Cd.Te shows significant deviations of the

A- + from random alloy values for a sample equilibrated at
AS=- kN((I- x)in(l-x)+xnx 300 K, they are still not as large as those measured in the

M NMR experiments, meaning that a major interaction may
+ Y (f, In fc, - f, In xJ)) be missing. However, at 300 K diffusion may be fast

J enough in HgCdTe for the material to equilibrate even at
N 7 Aj - t N this low temperature (see the discussion in the next

4T A - - In q({A1 }, 14). (12) section). The slower diffusion observed in HgZnTe may

be a distinct advantage, one that counters its above-
Note in the first equality in equation (12) that MIN is room-temperature critical temperature.

I for a four-bond and 1/4 for a 16-bond cluster. In the 16- We have shown that only the small {Aj} drive devia-
bond cluster case, there is, as a consequence, an exact tions in the populations ij away from randomness.
cancellation of the (I - x) In (1 - x) + x In x term by a Moreover, if Aj = nAj is linear in n, the number of B
portion of the third ,erm in the bracket. This occurs atoms, then despite the size of 6, the populations are still
physically because, in the 16-bond cluster, all the bonds random. Thus, effects that would otherwise be considered
associated with a given substituted atom are in the small may compete with the larger energies retained if
cluster. In the four-bond case, however, bonds from each they have the proper nonlinearity. We are examining
substituted atom contribute to four different clusters, several possibilities in Hg, _,Cd2Te. These include effects
Several features of equations (11) and (12) are note- caused by screening in the composition range where the
worthy. First, to and z, are functions of x but are alloy is a semi-metal, direct second-neighbour chemical
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11ur. 2. Composition variation of correlation-state-dependent quantities for Hg, - 0Cd0Te.

interactions treated in the context of Harrison's model dure. Because we do not have access to the original data I
[37], electron-electron Coulomb interactions driven by we have corrected published numbers by assuming the
polarity differences between the constituents, and corn- straight-line fits of In G versus I/T were made through
position variations of the elastic constants, the points T3 and T4 given by I

TV = (2T 1 + Tj')

3. Native d~ M 1W a d~uI~iOn T --T (T- 1 +2T 1 ) (17)

Then the correct expression

3.1. Dat fltal G = C(P)T"exp(-E/kT) (18)

There have been several measurements [15, 16] of the HS parameters are related to the fitted parameters by the 3
vacancy formation energy and Hg, Cd and Te tracer relations
diffusion coefficients. These measurements are always E = E'-mkT (19)
fitted to a functional form

G - G0 (P)exp(- E'IkT) (16) and I
where E' is interpreted as the activation energy and . .. (20)
G,(P) is the infinite temperature lmit of G. For vacancy M CTT

formation, G represents the vacancy concentration, and where
for diffusion the infinite temperature diffusion coefficient. Ta(T' + Tj'In(T 1 /T 3 ): T4. (21)
It is assumed in the fitting process that G.(P) can be
viewed as a function only of the partial pressure P above The approximate expression to r in equation (21) is I
the sample of the species under investigation. However, accurate if T4 - T3 4 T. Note that if m is positive E < E'

the pre-exponential coefficient always has a power-law and if m is negative E > E'.
temperature contribution, i.e. a 7' multiplicative com- To illustrate the effect of these corrections, we have
ponent. Because the measurements extend over a limited examined the case of VHS formation and diffusion and the I
temperature range, T, < T< T2, usually have some scat- interstitial Hg diffusion in Hgo.75 Cd0 .22 Te. The mass

ter. and the T" term varies more slowly than the expon- action equation for formation of VHE
ential, reasonable fits to the data are obtained. However, HgTe e VH5T + Hg (22)
when E' values are quoted to more than one significant I
figure, and G. to the proper order of magnitude, it is where Hg represents a Hg atom on a Hg site, and Hg,
important to include the 7" factor in the fitting proce- represents Hg in the vapour phase, has been analysed g
C"4
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m & . Composition variation of correlation-state-dependent quantities for Hg, _ ,ZnTe.

using standard results in statistical mechanics. The diffu- The quantityft, is calculated roughly from the massi sion coefficient D is given by action equation for the effective reaction

D a2 (23) HgTe + Vm.,Co V'Te + H&. (25)
6 (N again remembering that the HgTe is adjacent to a Vi, in

- where the initial state.
= (Then, the assumption that the H& in the interme-

- O Ifi (24) diate position does not remain long enough for itsvibrational states to thermally equilibrate leads to the
and where a is the hop distance, r, is the mean free time power-law m values quoted in table 1.
between hops, n/N is the fraction of lattice sites N There are several noteworthy features to the informa-
occupied by vacancies, wp is the presentation frequency tion in table 1. First, the corrections to the activation
of an atom at the barrier between it and an adjacent energies are 10 to 20%, which is important if the second
vacant site andf1. is the probability that an adjacent atom and third significant figures quoted are to be taken

reaches the intermediate position at the peak of the seriously. Second, note that for both vacancy and inter-
barrier between it and an adjacent vacancy. (The prime is stitial diffusion in the Chen [16] and in the Tang andinserted to remind us that this is not a normal interstitial Stevenson [15] work a larger activation energy corre-
because it lies between two vacant sites.) lates to a larger pre-exponential factor. This occurs

Taie 1. Corrections to experimental activation energies and pre-exponential coefficients.

Experiment Er(eV) G (Crn2 s - ) T, (K) T, (K) E(eV) C m

Vacancy formation

Vydysnath (13, 141 2.24 400 650 495 2.01 11/2

Vacancy diffusion
Chen (161 2.40 4.7 x 106 P,;' 400 490 441 2.06 3.2 x 10-21 P;%It 17/2
Tang and Stevenson (151 2.10 4.87 x 10 P,' 350 500 412 1.80 5.8 x 10 -22 P ;lt 17/2

Interstitial diffusion
Chen [161 0.54 1.1 x 10 - 1 P, 400 40 441 0.64 5.5 x 10 - 13 p: -5/2
Tang and Stevenson 1151 0.61 5.5 x 10' P,, 350 500 412 0.70 2.4 x 10-13 P.,+ -5/2

t (cm
2  - - T,f
Ccm - T" 9-C.
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because of the T" dependence and the fact that the two notation in that table is as follows. Ai corresponds to an I
experiments were conducted over different temperature A species occupying a B site, where I corresponds to an
intervals T, and T2. interstitial and V to a vacancy. No subscript on a species

The corrected numbers for the two groups are closer indicates that it is occupying the correct lattice site, e.g.
together than the uncorrected ones in both cases, though Hg = Hg1 ,. Square brackets [ ] refer to concentrations. I
still not in perfect agreement. If we average the corrected A subscript 'g' indicates the species in the gaseous. or

Hg diffusion activation energies of the two experimental vapour, phase, and P., is the Hg vapour pressure. Most of
groups we get the reactions in table 2 involve the creation or destruc-

tion of one or more unit cells. Because the resulting
ED.V. = 1.94 + 0.2 eV change in volume is accommodated at the surface, the

ED., = 0.67 + 0.04 eV. change in the number of unit cells will enter into the
determination of the defect equilibrium through the
surface entropy. Additionally, surface preparation and

3.2. Native defects orientation will affect the surface free energy. We have

Much of the following discussion has appeared pre- assumed for the present that such surface effects are
viously in [2]. As mentioned earlier the doubly ionized negligible, i.e. that the volume expansions and contrac-
cation vacancy is believed to be the dominant native tions can occur with negligible changes in the surface
defect in HgCdTe that dictates the electrical behaviour of properties.
the undoped material [13. 14]. We have recently reported To complete the defect equilibrium determination
the results of calculations of native and impurity defect correctly we must include the equilibration of the elec- 1
total energies in HgTe, CdTe and ZnTe [18]. The ener- tronic charges of the system. To do so we must have
gies for the formation of various native point defects in knowledge of the dominant charge states of the defects
HgTe are summarized in table 2; the HgTe solid and the and their activation energies with respect to the neutral
Hg in the vapour are used as reference energiest. These defect. Such calculations are complicated by the fact that
calculations used the linearized muffin-tin orbital (LMTO) most ab initio calculations of the electronic band structure
method within the local density approximation (LDA) to of semiconductors predict an incorrect bandgap, EG, a

the exchange correlation energy. Large supercells con- shortcoming of the local density approximation (LDA). I
taining one defect per cell were repeated periodically, and Therefore, we shall focus on the neutral native defects
from the difference in total energies per cell, with here, and the established or expected charge states of
and without the defect, the defect formation energy was these defects.
calculated. To expedite the calculations, the energies In wide-bandgap materials the equilibration of de- I
were calculated within the atomic spheres approximation fects can be substantially affected by the Fermi level; for
(ASA) with a small (spd) basis set. In the ASA, an approxi- example the formation energy of a donor will decrease
mation to the exact density functional is evaluated; as a when the Fermi energy is near the valence band edge,
result, an error is introduced which is larger than in other since the donor electron can drop into a vacant state near
LDA methods [38], and relaxation energies cannot be the valence band, thereby lowering the energy by - Eo.
accurately calculated. Thus only those differences in Because we are discussing HgCdTe with a narrow band-
energies that are > 0.5 eV here should be viewed as gap, we expect the Fermi effects to be small, but not

significant for these calculations. insignificant at high temperatures. Because of the small
An appropriate set of mass action constants for the conduction band effective mass, in n-type material the

neutral defect reactions is also given in table 2. The filling of the conduction band states by electrons can shift
the Fermi energy significantly. Combined with the in-

A different reference is used here than was used in table III in [18]. crease in the bandgap for the high temperatures at which
An error appears in that table owing to the incorrect use of an most defect studies are done, the effective bandgap can
energy of 2E. per unit cell rather than 44. The defect energies in
table I in 18]. from which the energies in table III were derived, are be substantially larger than the usual 77 K bandgap
correct. associated with a given concentration of HgCdTe.

Table 2. Defect reactions and formation energies.

Defect reaction Defection concentration Energy (eV)

Ev, + HgTe - VmgTe + Hg o  [V,] = P-,Kav., exp(- Ev,,IkT) 2.01t
E," + 2HgTe .- Te,,Te + 2Hg1 [Teln = P; ... exp(- E,IkT) 4. 96

ET. + HgTe- TeTe + Hg, [Te 0 = P-IKOTo, exp(- E.,IkT) 4.96

Ev,. + Hg, .-- HgVT. [VT.) = P,!Kc,,. exp( - E,.IkT) 3.12t
E,.. + 2Hg, - HgHgT. [HgT.j = P,2,K°,. exp(- EH.IkT) -0.42
Eo + Hg, -. Hg, lHg = P,,K?., exp(- EH/IkT) 0.84. 0.98

t Corrected experimental number from Vydyanath [13. 141

+ Calculated using a tight-binding Hamiltonian [17. £
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First we consider the defects which accommodate changes in the predicted defect concentrations. For ex-

excess tellurium-the first three defects in table 2. The ample, let us assume that our calculated antisite forma-mass action constants are given by a product of the form tion enthalpy is in error by 0.5 eV: in this case the ratio of

K? exp(- AEi/kT). (26) antisite-to-vacancy concentrations (at 500'C) will be
K= reduced to - I x 10- ". For an antisite formation en-

For the first three equations the K? are given thalpy in error by 1.0 eV, this ratio is reduced to - I x

by 10'. We do not expect the ASA errors to exceed 0.5 eV
-- [5].
K°.. = CO(kT)512(2rMH)3"2h - 3 exp(ASv../k) (27) If the HgCdTe is not completely annealed, and tellur-
TK -. Co(k T)'(2nmH) 3h -6 exp(AST.../k) (28) ium precipitates are still present, the defect equilibrium
Tend will not be that predicted by the mass action equations

and given in table 2. For example, near the inclusions we can
K, = Co(kT) 5 12(2rMH. )312h -3 exp(AST,./k) (29) assume that the defects will be nearly in equilibrium with

Here T is the temperature in kelvin, k is Boltzmann's the tellurium solid; thus

constant, mi, is the mass of the mercury vapour atoms, h E,.. + Te, +-+ VHTe (32)
is Planck's constant, AS is the change in vibrational and
entropy upon formation of the defect and Co converts
from site fraction to volume concentrations. Estimates, ET.,,. + 2Te,*- TeHSTe (33)
valid at high temperature, of the temperature variation of will be the appropriate reactions. The form.tion energies

the AS terms were included in the pre-exponential de- for a tellurium antisite and an Hg vacancy from the
pendence "1 of the reaction constants in table 1. Because tellurium solid are calculated to be 1.63 eV and 1.15 eV,
two unit cells of HgTe are destroyed when a tellurium respectively. Although the difference in the formation
antisite is created, compared with one unit cell when a energies is less than when both defects are referenced to
mercury vacancy is created, we do not expect that the mercury vapour (- 0.5 eV compared with - 2 eV),

exp[(AST... - ASv .)/kT] - 1. While we have not com- the gas phase entropy factor does not enter into the ratio
pleted the evaluation of these entropy terms, our preli- of the defect concentrations. Using the same estimate of
minary estimates indicate that this ratio is - 10. For the the entropy ratio, the defect concentration ratio using
tellurium interstitial and the mercury vacancy, we expect tellurium solid as the reference state is
that exp[(AST., - ASv.,)/kT] - I will be correct within3 a factor of 10. Evaluating the numerical constants we find [TeTH] - 10- (34)

uTe.] I0- o (30)V]
[Vxg] Thus, near the inclusions we expect higher relative
T 1 3 concentration of tellurium antisites, as compared with

10-8 (31) the rest of the material equilibrated with the Hg vapour.[VH] Additionally, the absolute [VHs] defect concentrations

for T = 500 'C and PNt = I atm. The conclusion from may differ substantially in the two regions of the mater-

equations (30) and (31) that the mercury vacancy is the ial. At present we expect [VHs] to be higher in an

dominant native defect is consistent with experimental 'atmosphere' surrounding a Te inclusion. A better calcu-

observation. This conclusion is unchanged if we include lation of the vibrational entropy is needed before we can

the possibility that the species may be ionized at the predict these absolute defect concentrations and their

equilibration temperature where the material is expected spatial extent. Differences in the defect concentrations
to be intrinsic. Although the tellurium antisite density arising from different equilibration conditions are a

decreases more rapidly with decreasing Hg pressure than possible source of spatial variability of the HgCdTe

does the mercury vacancy density, the point at which the material. If the material is not fully annealed to equilib-
concentrations are comparable is at less than PH, Z rium, for example because of an abundance of tellurium
10-1o atm, and certainly the HgTe phase boundary is precipitates, this history may affect subsequent process-

reached before such low Hg pressures can be achieved. ing.
This is also consistent with the fact that no p-to-n In the above we have discussed the defect energies for

conversion is observed in isothermal anneals for low HgTe and applied them directly to the small-x

mercury pressures [13, 14, 38], as would be expected if Hg, _,Cd.Te system. Because we are dealing with the

tellurium antisites became the majority native defect. native defects of an alloy, we expect a number of com-
Because the pressure dependences of the tellurium inter- plexities to affect the above analysis. First the variation ofI stitial and the mercury vacancy concentrations are the the defect formation energies for vacancies is sensitive to

same, the above conclusions will hold independent of the the alloy environment, in particular for the vacancies of

mercury pressure. the non-substituted species, such as tellurium in HgCdTe
We have checked the sensitivity of the calculated [39]. Even for vacancies of the substituted species, we

concentration ratios to the magnitude of the reaction have found that the formation energies may vary by
enthalpy. Because the enthalpies enter the exponents, several tenths of an electron volt. Because of this varia-

small changes in the enthalpies will result in large tion in the formation energy, the fraction of defective sites

067
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will vary by as much as a factor of 100 from one class of depend on the next generation of calculations, with the
sites to the next. Consider various classes of Hg sites in ASA removed and full relaxation included, plus a quanti- I
ideal HgCdTe, which can be distinguished to first order tative comparison of the entropy differences between the

by specifying the number of Hg and Cd atoms in the mercury antisite and the tellurium interstitital. to deter-
second-neighbour shell (the four first neighbours are mine the dominant defect in this class.
always tellurium), Hg,2-jCdj, with a concentration As mentioned above, we have shown that the tellur- I
given by [Ij]. The total vacancy concentration is given by ium vacancy formation energy varies significantly with

12 the alloy environment. Because the tellurium vacancy is
[VS] = [j ] Pi' K° exp( - E/kT) (35) not expected to be a dominant defect in HgCdTe, and the I

tellurium diffuses by an interstitial mechanism, we do not

where E, is the vacancy formation energy for the jth expect any measurable manifestation of this variation.
cluster. The populations of vacancies in each class of On the other hand, the Hg antisite may be the dominant

cluster, j, can be expected to differ because of differences Hg-excess defect, and its formation energy may vary I
in the cluster populations and the formation energies. significantly with the alloy environment. We are cur-
Additionally, the defect energy levels may differ in the rently calculating the magnitude of this variation.
various classes of sites, possibly leading to different
ionization states for vacancies in different classes of sites.
If the cations in the alloy are randomly arranged, such 3.3. Diffusion
differences may be difficult to infer experimentally. If,
however, the cations are correlated, exhibiting short- HgCdTe exhibits a complex tracer difusion profile, with I
range order, more complex behaviour may be present. As both a fast and a slow branch. The fast branch is
discussed earlier, such short-range order has been found attributed to a mechanism with vacancy and interstitial
in HgCdTe. In these cases, the contribution to the diffusion in parallel where the dominant diffuser is deter-
vacancy densities from the dominant class of clusters will mined by the pressure and temperature, while the slow I
be increased. Because the studies finding short-range component fits a mechanism with vacancy and intersti-
order focus on the tellurium-centred five-atom clusters of tial diffusion in series [ 15]. The activation energies for the
the form Hg&._Cd. rather than on cation-centred clus- fast branch as discussed previously are 1.90 eV and

ters of the form Hg, -. Cd., higher-level five-atom clus- 0.67 eV for the vacancy and interstitial mechanisms, I
ter-cluster correlations must be known to predict the respectively. Our calculated formation energy for the

effects on the vacancy populations. mercury interstitials are 0.84 and 0.98 eV for the anion-
Next we examine the defects which accommodate and cation-surrounded tetrahedral interstitial sites, re-

excess Hg in the solid. The existence region for HgCdTe spectively, and the experimental formation energy for the

is always tellurium rich, and thus the native defects which mercury vacancy is 2.01 eV. Comparing these energies

accommodate excess tellurium are expected to dominate, with the experimental activation energies we find close
For these equations in table 2, K9 is given by agreement, indicating that the migration energy contri- £

bution to the diffusion activation energies are small for
K°.. = Co '(kT) - s(2nm,.) - 3 12h3 exp(ASvy./k) (36) both interstitials and vacancies.

K ° . = Co '(kT)- 5(2nm.,)- 3 h6 exp(ASI. T./k) (37) In the vacancy diffusion case we are comparing two
and "experimental numbers for the diffusion and formation

and energies. Because the diffusion energy (1.94 eV) is the
K° = Co(k )- 5 '2 (2nmH 3)- 1 '2 h 3 exp(ASH./k). (38) sum of the formation and migration energy, the fact that

the vacancy formation energy (2.01 eV) is larger but
If we assume the change in entropy is comparable for all should be smaller is an indication that something is I
three defects, we find amiss, and the experiments should be repeated with the

goal of attaining higher accuracy.
[HgT] 10+14 (39) There is a similar discrepancy in the interstitial diffu-

[VT.] sion case, but now we are comparing the experimental

and diffusion activation energy 0.67 eV with a theoretical
formation energy 0.89 eV. We know that refinements to

[Hg] ~10" -1 (40) the theory will lower the predicted value. These refine- I
[VT.] ments need to be done before more definitive conclusions

can be made.
for T = 500 'C and P., = I atm. From equations (39) The difference between the two numbers obtained for
and (40) we see that the tellurium vacancy is a minority cation- and anion-surrounded interstitital sites (0.84 eV I
defect species. For the pressure and temperature consid- and 0.98 eV) sets a lower bound on the interstitial

ered, the density of Hg antisites is predicted to be migration energy. Most of the interstitial Hg will sit on
comparable to the density of Hg interstitials. Because the the lower-energy anion-surrounded site, and migrate
ratio of [HgT,] to [Hg,] is nearly unity, any errors in the through the intermediate-energy cation-surrounded U
calculation of the activation energy could push the sites. Examination of the lattice arrangement between
balance toward one side or the other. Thus we must these sites leads us to believe that the potential profile is
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unlikely to have a large barrier between the two classes of TEM studies of annealed LPE material indicate that there
site, and, as a consequence, the intersti'ial migration are few, if any, Te inclusions remaining [7].
barrier should be quite low. First-principles theories are now fast enough and

In a recent experiment on mercury diffusion in ion- accurate enough for practical use in process and perfor-
implantation-damaged HgCdTe, an activation energy of mance modelling. An effort to capture the results of many
several tenths of an electron volt was measured ["40]. The experiments into consistent models, and thereby increase

disparate results can be interpreted as a measure of only their reliability, has, as we have tried to demonstrate in
the defect migration contribution to the diffusion activa- this paper, become a realistic goal.
tion energy, since defects in excess of the equilbirium
concentration were probably formed during implanta-
tion. It is not evident that the measured activation energy AcnowI.fmnt
corresponds to the vacancy or the interstitial mechanism.
The conclusion that the diffusion activation energies arelargely defect formation energies, with the migration This2workywas supported by0NASA8contr9ctaNASb-
energies being much smaller, is in agreement with the 18226, by ONR contract N00014-88-C0096 and by

above interpretation of the Richter and Kalish [40]
experiment.
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1. INTRODUCTION

It is usual to divide metal alloy phases into three classes: electrochemical compounds,
size factor compounds and electron compounds.1 (The term "compound" is used rather
broadly here to include secondary solid solutions.) Electrochemical compounds are those
that form following classical rules of chemical bonding in which the coordination num-
bers reflect the valencies of the pure components. Size factor compounds embody the
famous Hume-Rothery "15% rule", and include substances such as Laves phases and
other topologically close-packed structures whose atoms are of largely differing sizes and
have therefore only limited ranges of solid solubility. An intriguing principle in the theory
of alloys is the abundance of alloys in the third category, the Hume-Rothery "electron
compounds": there appears a strong correlation between the number of valence electrons
per unit cell, valence electron concentration or electron per atom ratio and the crystal
structure adopted by certain alloy phases, be it fcc, bcc, hcp, fl-Mn, 7- or 6-brass struc-
tures. For example, the appearance of the #-phase at the solid solubility limit of primary
a-alloys of noble metals with elements in groups 12, 13 and 14 mostly occurs at a valence
electron concentration around 1.4. In the light of modern density functional theories of
electronic structure, it seems all the more remarkable that such a simple rule can hold
true over ranges of alloys that comprise simple, noble and transition metals. However,
the phenomenological evidence is hard to dispute: both the large number of electron com-
pounds, and the behaviour of defect structures. For example, non-stoichiometric --brass
will incorporate vacancies seemingly in order to maintain a valence electron concentration
that corresponds to the electron per atom ratio of 21/13 which stabilises the complex
cubic structure. NiAl has an ordered bcc structure with an electron/atom ratio of 3/2
(transition metals are assigned a valency of zero in the Hume-Rothery theory); in com-
pounds containing less than 50% Ni, some of the Ni-sites remain vacant and it has been
suggestedl,2 that this is to maintain a valence electron concentration favorable to the
formation of bcc phases. It is possible that this phenomenon has nothing to do with the
valence electron concentration. Instead it may reflect the large formation energy of an Al
antisite defect in the highly ordering Ni-Al system compared with the vacancy formation
energy. In fact we believe that the Hume-Rothery e/a rule is unlikely to be operative,
for example, in Ni-Al or Ni-Zn alloys, and that since the rule was stated many merely
coincidental observations have been attributed to it. In the case of noble metal alloys
with groups 12, 13 and 14, however, we shall show that the e/a rule can be seen as a
direct consequence of the general validity of the rigid band model, as first suspected by
Jones3 in 1937.
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I
It has been the aim of many theoretical studies over the past 55 years to explain the

electron compounds in terms of electron theory; good and comprehensive reviews of this
effort can be found in recent works by Cottrell 4 and Hafner. 5 A very detailed discussion
of the pseudopotential approach can be found in Heine and Weaire.6 A detailed review
of experimental data and rigid-band models has been made by Massaski and Mizutani. 7

Many studies have concentrated on the archetypal system Cu-Zn, since this reveals most
of the principles of the theory, and also since this was the subject of the pioneering study
of the electron compounds3 resulting in the famous "Jones Theory of Alloying." A glance
at the phase diagram (see figure 7a) shows that while Zn is hcp and has a wide range
of solubility in Cu, which is fcc; between the solubility limits 0.3 < z < 0.6 CuzZnl-z
alloys contain bcc #-brass. Thus as one adds Zn to Cu, varying the valence electron
concentration, n, continuously between one and two, the structure of the alloys changes
in the sequence fcc - bcc - hcp, the phase transitions occurring at approximately I
n = 1.4 and n = 1.8 (we omit dicussion of the complex cubic -y-brass phase occurring
between n = 1.6 and n = 1.8). The purpose of Jones' theory was to explain the transition
from fcc to bcc at a valence electron concentration of 1.4.

Jones' theory was based on the following three assumptions.
1. The energy difference between phases is given entirely by the difference in the band-

structure energy in the two crystal structures. In other words, given a bandstructure I
for the crystalline solid (that is to say, the relationship e(k) between wavenumber k
and electron eigenenergy) and its associated density of states g(E), the bandstructure
energy is I

Eband= e(kj)
o c.e)de (1) 1

where the sum is taken over occupied electronic states. The Fermi eF energy (max- I
imum occupied energy level) is determined by the valence electron concentration n
according to

n g(e)de. (2)

2. In order to compute the energy difference, one can assume energy bands which deviate
from free-electron behaviour only as they approach Bragg reflecting planes in the i
Brillouin zone and only in the direction normal to these planes. Only under these
conditions could the electron dispersion e(k) be written in closed form. 3

3. The rigid band approximation. This states that the effect of alloying is to add or
subtract electrons without altering the bandstructure. In other words, we can assume
that the bandstructures of all CuzZn-z alloys are same: they only differ in the I
positions of their Fermi energies. A consequence of the rigid band approximation
is the implication that alloys are disordered at all compositions. This will also be
implicit in our work, so that we are not able to account for the ordering of the /-m
phase into the 0' (CsCl) structure. Both these two approximations can be removed
within the Coherent Potential Approximation and General Perturbation Method. 8

As far as the density of states is concerned, this is not necessary in the case of Cu- I
Zn, where the rigid band approximation has shown to be valid in neutron scattering
experiments.9 On the other hand, in the Cu-Ni system our approach would not be

H-2 I



justified. 9 We will also find that the rigid band model severely overestimates the heat
of formation of O-CuZn. In spite of these reservations we will keep to the rigid band
approximation so that we are able interpret our results within the framework of Jones'

Stheory of alloying. Also, since the phase diagram shows no a/0 equilibrium at 09K,
our purpose here is only to expose general principles concerning the Hume-Rothery
e/a rule.

Recent advances are able to address the first two assumptions more clearly than
previously. The assumption 1 is now known to be rigorously provable to first order in
density functional theory, and is known as the structural energy difference theorem.10 As
Jones pointed out, 11 if assumption 2 is not invoked, then the evaluation of the density of
states function becomes a formidable task. (Indeed even then, a further approximation
needed to made by Jones:3 we will return to this in section 4.2.1 .) This is particularly
so, since the Jones theory is centred in the nature of the density at and near Van Hove
singularities and these are difficult to reproduce even with modem methods of Brillouin
zone integration. Our present paper is devoted to an examination of the theory of Cu-Zn
alloys in which we apply the structural energy difference theorem to self-consistent rigid
band models. Using an advanced technique for Brillouin zone integration, we explicitly3 show the Van Hove singularities responsible for the transitions from fcc to bcc to hcp
as the valence electron concentration is varied. The structure of the paper is as follows.
In section 2 we describe Jones' seminal work, its popularisations, its relation to other3 current theories and its interpretation in terms of general arguments involving typical
shapes of the density of states. In section 3 we show how two recent advances, namely
the structural energy difference theorem and the analytic quadratic method of integration

I allow us to remove all of Jones' assumptions except the rigid band approximation for the
alloy. In section 4, we make density functional calculations of phase stability in the Cu-Zn
system using both the self-consistent bandstructure in the local density approximation,I and various model bandstructures in an attempt to recover Jones' original theory. We
confirm the validity of the rigid band approximation in this context, and we are able to
make detailed statements about the way in which the positions of Van Hove singularitiesI in the bandstructure drive the transitions between phases. In section 5 can be found a
summary and our conclusions.

2. THEORIES OF THE ELECTRON COMPOUNDS

2.1 The Mott and Jones, and Jones theories

Unfortunately, considerable confusion has accumulated in the metallurgical literature
surrounding Jones' theory of 1-phase alloys. This situation arises from the fact that two
quite different explanations of the Hume-Rothery rule are attributed to Jones. We will
call these the Mott and Jones, and the Jones models and will describe them separately in
the following two paragraphs. The situation has been very clearly unravelled by Hume-
Rothery.12 We also refer the reader to discussions in Barrett and Massalski, 13 and Heine
and Weaire.8

Initially, Hume-Rothery 14 observed that in a large number of binary compounds of
univalent fcc metals, the phase diagram displayed a limit of solubility (al(a + 1) phase
boundary) at a valence electron concentration of about 1.4 . Furthermore the appear-
ance of a single bcc -phase ((a + 0)1# phase boundary) occurred at a valence electron
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I
concentration around 1.5 . Mott and Jones15 advanced the following explanation for the
phenomenon. If we imagine a free-electron Fermi sphere expanding inside the fcc Brillouin U
zone as the valence electron concentration is increased between one and two, we find that
the sphere makes contact with the {111} zone faces at a valence electron concentration
of 1.36 . Similarly in the bcc Brillouin zone the sphere will first contact the {011} faces
when the valence electron concentration reaches 1.48 . Mott and Jones pointed out that
the density of states would go through a maximum at the point where the Fermi sphere I
made contact with the zone boundaries. This is because Bragg-reflection causes otherwise
free-electron-like bands to deviate and become flat. This will lead to a cusp-like peak in
the density of states. If, furthermore, we compare two structures, one of whose density
of states is a free-electron parabola, while the other has a maximum due to this zone
boundary effect, then one can argue qualitatively that when the Fermi energy lies on the
maximum, the latter structure will be stable since electrons can be accommodated under I
the peak in the density of states at lower energies than in the competing structure. There-
fore as the valence electron concentration in an fcc solid solution is increased from one, at
a value of 1.36 the density of states in the stable fcc phase will begin to decrease and that 1
phase will become less stable than a competing structure with free-electron-like density of
states since the decreasing density of states will force electrons into higher energy states
and de-stabilise the fcc phase. This is said to explain the formation of #-phase alloys at I
valence electron concentrations around 1.4 . At a valence electron concentration of 1.48,
the bcc phase will be most stable; this is the explanation for the ubiquitous occurrence
of 3-phase alloys at the famous Hume-Rothery electron/atom ratio of 3/2. Clearly, the 1
Mott and Jones model implies that at a valence electron concentration of one (that is to
say, in Cu) the Fermi surface is not in contact with any of the faces of the fcc Brillouin
zone. Measurement of the Fermi surface of Cu by Pippard in 1957 showed that this was I
incorrect, and that the Fermi surface of Cu formed elongated necks at the {111} Brillouin
zone boundaries. 18 This is often quoted as indicative of the complete failure of Jones'
theory. An important fallacy in the Mott and Jones theory is that if the bands were
free-electron-like so that contact with the zone boundaries was made at the free-electron
values of 1.36 and 1.48, then there would be no peaks in the density of states. 12 Con-
versely, if there were peaks (arising from deviations from free-electron behaviour) then
they would not occur at the free-electron values but at lower values of valence electron
concentration. A final consequence of the popularisation of the Mott and Jones model is 3
the statement encountered in several elementary texts that stability of a structure arises
when the Fermi level falls in a maximum in the density of states, and that a decreasing
density of states indicates instability with respect to a competing phase. This rather 1
counter-intuitive statement is indeed incorrect, as we shall show in section 2.2 .

The above model is frequently referred to as the Jones theory of alloying, even in
modern metallurgical textbooks. 17 But Jones' work of 1937 is distinguished from the Mott I
and Jones model in two respects. Firstly, Jones explicitly incorporated the large band
gap observed on the Bragg-reflecting {111} planes in fcc Cu; and secondly, rather than
making qualitative arguments Jones numerically integrated his model density of states to I
distinguish the energies of the fcc and bcc phases. The characterisitic peaked structure of
the fcc and bcc densities of states is shown in figure la. These were obtained by Jones from
approximate Brillouin zone integrals of a model dispersion for Cu which included a band I
gap of 4.1eV deduced from optical measurements. The effect of the large gap is to move
the peaks at the zone boundaries to valence electron concentrations much lower than the 1
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free-electron values. In fact the Fermi level in Cu indicates that in Jones' model the Fermi
surface was about to make contact with the zone boundaries (see figure la). Numerical
integrations of the densities of states puts the aI(a + P) and (a + #)I# phase boundaries
at valence electron concentrations of 1.41 and 1.45 in very good agreement with what
was known of the phase diagram in 1937. These values do not, of course, correspond
with the peaks in Jones' densities of states, which occur at approximately 1 and 1.2
electrons/atom. 12 In fact fcc is at its most stable at a valence electron concentration
corresponding to the peak in the bcc density of states (see figure 1b). This result is
completely at odds with the conventional wisdom since at this point the fcc density
of states is rapidly decreasing; however we shall see in section 2.2 that this is in fact
quite consistent with the shapes of the densities of states. Much of the confusion in
the literature, in fact, has arisen from a mixing up of the Mott and Jones, and Jones
models. In most textbooks1,17 we find Jones' figure (our figure la) reproduced, but with
the peaks in the density of states labelled with the free-electron values 1.36 and 1.48
electrons per atom. Furthermore, it is claimed that fcc becomes unstable with respect
to bcc as soon as the fcc density of states begins to decrease. This is not Jones' result
as can be seen from figure 1b; however, it is not immediately obvious since the density
of states is plotted against energy whereas the structural energy differences are plotted
against valence electron concentration. It is often clearer to show both quantities plotted
against n. Then for a given bandfilling, one can immediately compare the densities of
states and the energy difference.

Heine and WeaireO have pointed out the important distinction between theories that
attribute special stability to structures in which contact is made between a Brillouin zone
boundary and the Fermi surface and those that involve contact with the Fermi sphere,
which is the Fermi surface the alloy would have if the bands were truly free-electron like.
There is no justification in the former case, as can already be seen from Jones' results
and will be demonstrated below. The Mott and Jones assertion that stability arises when
the Fermi sphere makes contact is phenomenologically correct, and we will see why it
approximately works in section 2.2. This is also the result that emerges from second
order perturbation theory because the leading terms in these theories are indeed response
functions of a free-electron gas which have weak singularities at twice the free-electron
Fermi wavevector. However, these singularities do not immediately lead to minima in
the bandstructure energy. Therefore even in pseudopotential perturbation theory there
is no complete explanation of the Hume-Rothery rule of electron compounds. It will be
necessary to accurately calculate energy bands and carefully sum the occupied states.
This is the approach we shall adopt here. There are two advantages over pseudopotential
perturbation theory, on which attempts to understand the Hume-Rothery rule has invari-
ably been based in the past.58,6 Firstly, our bandstructure energies are exact to all orders;
and secondly we will properly include sd-hybridisation in our calculations. We will show
explicitly that neglect of d-band effects leads to an incorrect prediction of the structure
of pure Cu.

2.2 General arguments

Following Jones18 and Massalski and Mizutani,7 it is possible to make some quite
general arguments in the context of which we will be able to make an analysis of our
results below. At the same time the shortcomings of the Mott and Jones theory become
immediately evident.
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1
Given the density of states of two different structures as function of the energy, it is

difficult to envisage the difference of the bandstructure energies as function of the valence
electron concentration, since the interplay between two different Fermi levels must be
considered. In order to understand the behaviour of the bandstructure energy, one may
exploit the fact that that the derivatives of Eband with respect to the valence electron
concentration from equations (1) and (2) are given by

dEband = 
(

d2Ebad 1 (4)

Taking the difference of eq. 3 for two different structures, we see that the derivative of the I
energy difference is zero when the two Fermi energies are equal. At these values of n, the
difference of the two bandstructure energies AEband is therefore extremal (except in the
special case of a saddlepoint). To determine whether the extremum is a maximum or a 5
minimum, we take the difference of eq. (4) between the two structures. It follows that the
more stable structure at the extremum is the one with the lower density of states at the
Fermi energy.t This suggests the following procedure for analysing the energy difference I
between two phases. One should first search for those n for which the Fermi energies are
equal and the energy difference is extremal. This is easily done by varying a common
Fermi energy until the occupied parts of the two densities of states have equal areas. By 1
comparing the two densities of states at the Fermi energy, the more stable structure can be
determined. The critical valence electron concentrations for the crossover between phases
(where the two bandstructure energies are equal) can be estimated from the positions of 1
the extrema.

We are now in a position to point out the basic fallacy in the Mott and Jones theory.
The central argument of the theory is that the instability of a phase is associated with the
steep drop behind a peak in the density of states (which is correct) and that the instability
occurs immediately after states behind the peak start filling up (which is incorrect). To
see the error, consider figure 1c which shows the density of states for three typical cases.
The first, labelled "P", is the free-electron parabola. The second, labeled "F" shows the
typical behaviour when the free-electron bands are perturbed by a set of Bragg planes. 1
The third curve, "B", is similar to curve F, but corresponds to a Bragg plane further
from the origin. For the Jones model of the Cu-Zn a - 0 transition, F and B would
correspond to fcc and bcc, respectively. Comparing phases F and P, it is seen that the 3
two Fermi energies are equal at energy e1, at which curve F rejoins the free-electron
parabola, as well as all higher energies. Note that the triangular areas above and below
the free-electron parabola must be equal. The two densities of states are equal at el, so 1
that the above criterion for deciding between a maximum or minimum does not apply.

t The converse applies, however if AEbnd is a minimum and greater than zero or a
maximum and less than zero. Under these circumstances the most stable structure will be
that having the highest g(XeF). This case will not arise in the present context, but in other
situations such as application to the energy ordering in transition metal trialuminides19  I
we have found exactly this state of affairs. In that case a naive appraisal of the densities
of states would have led to an incorrect structure prediction. 3
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However, curve F has clearly moved electrons to lower energies and is more stable. In fact,
phase F has a lower bandstructure energy at all n, in disagreement with the statement
that F should become unstable as soon as the peak at point A is passed.

Turning to the more relevant case of phases F and B, one sees that equal density of
states areas and the extremal bandstructure energy difference occur at the energy labelled
e2. There, the density of states of phase F lies below that of B, so that phase F is more
stable. We see that phase F does in fact have a lower energy when the Fermi energy
reaches point A, as discussed by Mott and Jones, 15 but then becomes ever more stableIwith increasing valence electron concentration until point e2 is reached. The reason is
easy to understand. We start from the situation in which F should be the most stable
according to the Mott and Jones model, namely when the F and B Fermi energies lie
at point A and at some higher energy, respectively. Incrementing the electron number in
small steps, each extra amount of charge enters at a lower Fermi energy for F than for
B and serves to further stabilize phase F. This continues well into the range where the
F-density of states lies below the B-density of states, until finally the two Fermi energies
are equal and the maximal bandstructure energy difference is reached. Consequently, and
contrary to the Mott and Jones model, the crossover at which phase B becomes stable
relative to F must lie at an even higher valence electron concentration.

These examples have demonstrated two interesting facts. Firstly, the phase transi-
tion does not happen as soon as states after the peak at point A are filled, but comes
considerably later. Secondly, unless the density of states of the second phase deviates
from the free-electron parabola, there will be no transition at all. Therefore the critical
valence electron concentration always depends on the shape of both densities of states,
and cannot be deduced from prominent features of the first alone. We can now come to
conclusions concerning the question of the Fermi surface or Fermi sphere touching the
Brillouin zone face. Clearly there is no special significance to the valence electron con-
centration at which the Fermi surface touches; this is just point A, and all we know is
that the transition is somewhere higher up. However, it can be expected that the valence
electron concentration for which the free-electron sphere touches will be a useful guide in
many cases. This is simply because two effects tend to cancel: the peak at point A always
lies below this free-electron valence electron concentration, while the energy crossover will
lie a comparable amount above the peak. Given a sequence of phases as in the Cu-Zn
system, the critical valence electron concentrations deduced from the free-electron sphere
will probably give the correct sequence of the phases and a reasonable estimate of the
phase boundaries.

It is obvious from the common tangent construction that the position of the phase
boundaries must depend on the free energies of both phases as emphasised in the last
paragraph. This point seems to have been neglected in the literature. In the simplest
(Mott and Jones) model, one considers the critical valence electron concentration at which
the fcc phase becomes less stable than bcc; in other words, the concentration at which
the energies of the two phases are equal. This has no special significance in determining
phase boundaries; except that the al(a + f) and (a + #)I# boundaries must bracket this
point.
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I
3. THE DENSITY FUNCTIONAL APPROACH 5
3.1 Frozen potential calculations

Although Jones3 had to take it as an assumption that the structural energy difference 3
was just the difference in bandstructure energies, we now know that in density functional
theory there is a rigorous proof of this to first order. 10 Suppose we want the difference in
total energy between two monatomic crystals with the same atomic volume but having
different crystal structures, I and II. Then we may make a calculation of the self-consistent
potential of structure I and the bandstructure energy eq. (1) associated with that poten-
tial. Then, if we have a way of rigidly transferring this potential into structure II, we U
may calculate the bandstructure energy of that structure in the frozen potential. Then
the total energy difference between structures I and II is given by the difference in their
bandstructure energies. This can be shown to be an exact result to first order in the dif- I
ference between the frozen potential in structure II and its self-consistent potential. 10 ,20

Of all the bandstructure methods available to density functional theory, the LMTO-ASA
method21 most lends itself to this kind of calculation since the potential can be expressed I
completely in terms of a set of four "potential parameters" for each inequivalent atom
and for each orbital type: a, p and d. The frozen potential approach can be more accu-
rate than a self-consistent LMTO-ASA calculation. This is because the major source of
error in LMTO-ASA arises from the spheridisation of the charge density in calculating
electrostatic terms in the total energy. In the structural energy difference theorem these
terms cancel to first order and so do not contribute any error.

Our procedure for calculating structural energy differences is the same as that de-
scribed by Skriver.10 (See also van Schilfgaarde et al.22) In the present paper, this method I
shall be called the local density approximation-rigid band (LDA-RB) approach. We have

chosen to do all our calculations at the measured atomic volume of -CuZn (see table 1).
We begin by making a self-consistent LMTO calculation of fcc Cu, including "combined I
correction" and augmenting up to tmax = 2, i.e., including a, p and d orbitals in the ba-
sis. Combined correction 21is a means of going beyond the atomic spheres approximation
(ASA) in the LMTO method. By adding extra terms in the hamiltonian and overlap
matrices the combined correction accounts for those regions of space in which the atomic
spheres overlap, or which are not included in any atomic sphere, by computing integrals
between unaugmented LMTO functions in these regions. The combined correction also
includes unaugmented basis functions from tmax + 1 to co inside the atomic spheres. Al-
though the combined correction somewhat detracts from the simple elegance of the ASA
and structural energy difference theorem, it is found to be necessary in computing the
very subtle energy differences between fcc and bcc noble metals. Essentially our approach
is to take a trial potential within which we calculate energy bands as accurately as possi-
ble. Our self-consistent potential parameters are shown in table 1. This potential is then
used to generate bandstructures for fcc, bcc and hcp Cu. The only differences between
the structures then appear in the structure constant and combined correction matiices.
(This is another elegant feature of the "spherical" methods such as LMTO in which the
scattering properties of the atomic potentials separate out from the structure of the lattice
in the secular equations.)

From the bandtructures, we generate densities of states, which we then integrate
up to Fermi energies corresponding to a number of electrons per atom which we vary
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i in increments between 11 (Cu) and 12 (Zn). In this way, we are using a rigid band
formulation to the alloy problem to investigate the relative stability of fcc, bcc and hcp
as a function of number of electrons. We plot this as two energy differences, bcc-fcc and
hcp-fcc against valence electron concentration.

3.2 Reconstructing the density of states

I
Because the whole problem, and particularly the interpretation, hinges on the ex-

istence of Van Hove singularites in the bandstructure at the Brillouin zone boundaries,
we have devoted some effort to the problem of obtaining the density of states from the
bandstructure e(k) where we evaluate the eigenvalues e of the hamiltonian at a discrete
set of reciprocal lattice vectors {k}.

This is a perennial problem in solid state theory: namely, how to construct a density
of states function from eigenvalues given on a mesh of k-points. Solutions fall generally
into two classes: those that use only the information given at each of the discrete set
(these are called "sampling" methods); and those which interpolate the bandstructure
within the k-mesh and then calculate the density of states analytically from the interpo-
lated bandtructure. Of the latter class, the most widely used is the linear tetrahedron
method of Jepsen and Andersen. 23 Here, the reciprocal unit cell is divided into tetrahedra
with apexes lying on the k-mesh. The bands are then interpolated linearly within each
tetrahedron resulting in a continuous (but not differentiable) bandstructure everywhere
within the unit cell. For this approximate bandstructure, the density of states is calcu-
lated analytically. A serious drawback is that the interpolation will lead to errors if there
are bands that cross within a tetrahedron. Also neither linear nor sampling methods can
resolve Van Hove singularities properly. These are kinks, or points of infinite derivative
in the density of states which are caused by k-points at which the gradient of the energy
band disappears. Therefore, since the linear terms vanishes at these points, one must
interpolate the bands at least to quadratic order to obtain a density of states function
with analytically correct Van Hove singularities. This can be done using the "analytic
quadratic method"24 in which the k-mesh is used to construct a network of tetrahedra
which have a k-point at the mid point of each edge as well as at each apex. This allows
the eigenvalues to be interpolated to quadratic order so that the resulting bandstructure is
both continuous and once differentiable. Unfortunately this approach still leads to errors
from band crossings inside the zone. This problem is largest for the complex of the fine
t-bands, which in our case are completely filled. On the other hand it is well known that
the best way to obtain integrated quantities over a full band is to use sampling over a
regular mesh. 25 Therefore in view of the very small energy differences we are interested
in, we have adopted the following strategy. To obtain the most accurate integrals over
the t-bands, we have used a sampling method over a mesh constructed by marking 40
divisions along the three reciprocal lattice basis vectors. For displaying densities of states,
and for integrals over purely a- and p- bands, we have used the analytic quadratic method
using eigenvalues from 11700, 9139 and 19635 k-points in the irreducible wedges of the
fcc, bcc and hcp Brillouin zones respectively. For easy reference in what follows, we show
in figure 2 the fcc, bcc and hcp Brillouin zones and the standard labelling of the symmetry
points and lines.
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I
4. RESULTS AND DISCUSSION

In this section, we show our solution to the Cu-Zn problem. Firstly, we calculate
structural total-energy differences using the structural energy difference theorem described
in the previous section. Having demonstrated that the LDA-RB approach gives the I
correct answers, we then attempt by successive approximations to recover the Jones, and
Mott and Jones theories within our framework.

4.1 The local density approximation-rigid band results

The self-consistent LMTO bandstructures of fcc Cu and Zn are shown in figure 3
alongside the densities of states calculated using the analytic quadratic method. These U
are energy bands calculated within the local density approximation to density functional
theory. We have used the parameterisation of the von-Barth-Hedin exchange and correla-
tion energy density used by Moruzzi et al.26 The self-consistent potential parameters are
given in table 1. To generate the bandstructures of bcc and hcp Cu the potential param-
eters from self-consistent fcc Cu are used and only the structure constants and combined
correction differ, as described in section 3.1. The resulting bandstructures are shown in
figure 4, where we concentrate on the bands around the Fermi energy lying above the
d-bands. Figure 5 shows the density of states of fcc and bcc Cu superimposed. In this fig-
ure the Van Hove singularities are labelled with symbols referring to the Bragg-reflecting
Brillouin zone boundary planes which have produced the singularities and the symmetries
of the corresponding wavefunctions. As indicated in figure 2, L and X refer to the fcc
f111} and f002} planes, while N refers to the f1101 planes in the bcc zone. They are
clearly seen in figure 4 as energies at which the slope of the energy bands vanishes.

Let us briefly discuss the important features in figures 3, 4 and 5. We first note that
the difference between Cu and Za lies primarily in the position of the d-bands which
in Zn are well below the Fermi energy, while in Cu the sp-bands around fF are clearly
perturbed by the d-bands which are rather shallow. We note that the Fermi energy in Cu I
lies between the bands labelled L2, and L1. L2, is a pure p state and the gap between it
and the pure s L1 state above it is caused by the requirement that the free-electron-like a
and p states be orthogonal to the tightly bound d-states. 27 The position of the L1 state is I
further raised due to "repulsion" from the lowest d state which also has L symmetry.28

This is the origin of the measured gap of 4.1eV used in Jones' calculations.3 We note that
the effect of yd-hybridisation is to produce an asymmetric band gap at the Brillouin zone
boundary. Normally in perturbation theory the effect of Bragg-reflection is to split the
energy evenly about the free-electron value. (Asymmetric splitting is a common feature in
the bandstructures of noble metals.) As expected the gap becomes smaller in the absence
of strong hybridisation with the d-band as is seen to be the case in Zn (figure 3). In
the Mott and Jones picture, there are no d-bands, the gap at L is smaller and the Fermi
energy lies below the L2, p-state. We see that the real life case is rather far removed
from the Mott and Jones model. The origin of the raised Fermi energy is the shrinking of
the constant energy surface as ad-hybridisation is turned on, the sp-bands bending over
to join into the highest lying d-bands. This can be seen clearly in the r to K panel in
figure 3. The effect of ad-hybriisation is to bend the uppermost ap-band in towards r
so that at a given energy, the surface of constant energy shrinks. Therefore in order to3
accommodate a given number of electrons the Fermi energy must be raised.

We now consider the structural energy differences arising from application of the
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3.

structural energy difference theorem and the rigid band approximation. In all that follows
we will use results based on the self-consistent fcc Cu potential. However as a rather
extreme test of the rigid band approximation, we show in figure 6 the structural energy
differences AEband computed using both the self-consistent Cu and self-consistent Zn
potentials given in table 1. Using the Cu potential certainly bears out the observed
phase transitions in the Cu-Zn phase diagram. In order to assess the validity of the
structural energy difference theorem in the atomic spheres approximation, we also show in
figure 6 the energy differences in pure Cu and Zn calculated using a full-potential LMTO
method. 29 We believe that these results are essentially exact within the local density
approximation. It is notable that using the Cu potential one can reproduce very closely
the phase ordering in Zn. This shows that in this case the rigid band approximation is not
very severe. It is important to note that the Zn potential leads to the hcp structure being
slightly more stable in Cu. This is because the Zn potential produces relatively low-lying
d-bands, so that the sd-hybridisation effects, that we will see below are so important in
stabilising Cu in the fcc structure, are not reproduced.

It is clear that the shift of the Fermi energy to a position above the L2, singularity,
and the distortion of the free-electron-like nature of the bands due to the shallow d-bands
means that a different interpretation of the phase transitions in the Cu-Zn system than
the traditional one is called for. In order to consider the LDA-RB results in the light
of the general considerations of section 2.2, we show in figure 8 bandstructure energy
differences from figure 6 and the density of states and difference in Fermi energy AEF
plotted as functions of n. (With inclusion of the d-bands, note that the total number of
electrons per atom is n + 10.)

To begin with, we can see the origin of the stability of fcc Cu in the local density
approximation. Since the Fermi energies at n = 1 are almost equal (-0.133, -0.134 and
-0.135 Ry in fcc, bcc and hcp respectively), we can conclude that the stable phase of Cu
will be that having the lowest g(CF). This is fcc as seen in figures 5 and 8. In fact we can
attribute the stability of fcc with respect to bcc to the shapes of the respective Brillouin
zones. We see from figure 5 that the fcc density of states is low between the L2, and
X4, singularities, while the bcc density of states is raised near the Fermi energy by the
singularity at N1.

At higher valence electron concentrations, the fcc density of states is raised above the
bcc by the X4, singularity, and we see in figure 8c that shortly after this singularity is
reached the bcc and fcc Fermi energies become equal leading to a minimum in the bcc-fcc
energy difference and the stabilisation of the /-phase.

In the light of our remarks in section 2.2, we can see that the competition between fcc
and bcc structures can be analysed by identifying those valence electron concentrations
at which the Fermi energies are equal. This occurs at two energies, indicated in figure 8c
and by vertical lines in figure 5. At these points, fcc and bcc respectively are at their
most stable, the stable phase being that with the lowest density of states at the Fermi
energy.

We also conclude that hcp is stabilised above n = 1.6 due to the L1 and N1, singularites
at the top of the band gap in the fcc and bcc structures. This effect is discussed in more
detail in section 4.2.1. The /-phases are stabilised by the steady linear decrease in g(e) in
the bcc band gap, while the fcc density of states encounters a further singularity at the
{200} zone faces. Rather than the L2, singularity at the {111} faces of the Brillouin zone
being responsible for destabilisation of the fcc phase as in the Mott and Jones theory, in
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3
the LDA-RB model this peak is washed out by the shoulder from the d-bands, and the
additional faces of the Brillouin zone at {200} are responsible for the a -- transition.
Furthermore, we have seen that features at the various Brillouin zone faces have conspired
with the steeply falling shoulders from the d-bands to favour the fcc phase in Cu. We
will see below that this result can only be obtained using realistic bandstructures (i.e.,
explicitly including the d-bands).

From the data of figure 6a, we have computed free-energy-composition curves in
order to estimate the zero-temperature phase boundaries. These curves are shown in
figure 7b, sheared according to Zener's device30 in order to allow the common tangents
to be drawn. Our al(a + 3) and (a + 3)I phase boundaries are very closely spaced 3
at around 1.33 electrons per atom. This construction is only useful in a comparison
with Jones' results3,30 which we defer until section 4.2.1. The zero temperature phase
boundaries are unknown. Indeed, it is reported31 (see figure 7a) that 3'-CuZn decom- I
poses eutectoidally at 2500C, so that the true limit of solubility can only be found if the
equilibrium with the 7 phase is taken into account.t This has also been neglected by
Turchi et al.8 who however find a zero-temperature solubility limit at n = 1.25 which I
differs from our n = 1.32. The discrepancy must arise from our use of the rigid band
approximation, which is also inappropriate for the determination of the heat of formation
of CuZn. In our LDA-RB model we obtain a heat of formation for disordered 3-CuZn I
of -5OkJ/g-atom. This greatly overestimates the experimental heat of formation31 of
-9.4 :. 1.25kJ/g-atom; and our calculated value of -12.9kJ/g-atom for ordered 8'-CuZn
using full-potential LMTO.29 We have independently estimated32 the enthalpy change I
upon ordering to be of the order of -4kJ/g-atom (which compares well with a value of
-3.5kJ/g-atom given by Turchi et al.8), so that the heat of formation is properly repro-
duced in the local density approximation, identifying the rigid band approximation as the 1
principal s-urce of error.

4.2 Return to the Simple Theory I
We are now at the point where we have applied Jones' methods to the self-consistent

bandstructure in the local density approximation in the Cu-Zn system. We have confirmed
that indeed the observed phase transitions are closely linked to the bandstructure (as is
to be expected in the light of the structural energy difference theorem) and we have
confirmed that the the LDA-RB approach predicts the correct sequence fcc - bcc -- I
hcp as the valence electron concentration increases between one and two. But we have
found the shallow d-band in Cu to be an important influence in the problem. Firstly we
find that the features of the bandstructure thought to be responsible for the fcc - bcc 3
transition (namely the positions of the L2, and N1 Van Hove singularities) are below the

t In which case, the common tangent being drawn between a and -y curves, the al(a+3) 3
phase boundary would move further to the left as seen in the experimental phase diagram.
The phase diagram indicates that 3'-CuZn (like NiTi) is unstable below a temperature as
high as 6000C. We have in fact found 32 that in the local density approximation P'-CuZn I
has a zero value for its elastic shear constant j(c11 - c12). In a similar calculation, NiAl is
found to have a negative value for this elastic constant. This is to be expected since the
bcc structure is unstable with respect to this shearing in the absence of covalent or ionic 1
bonding.30 For this reason P'-CuZn is only stabilised at elevated temperature by a large
vibrational entropy, and is not stable at O°K.
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Fermi energy and largely masked in the upper shoulder of the d-electron density of states.
Secondly, we have come to suspect that the stability of fcc Cu is in fact due to the effects
of the d-band. In fact Hafner 5 has pointed out that a general feature of pseudopotential
perturbation theories is that there is no ground state fcc phase at a valence electron
concentration of one. This he attributes to the neglect of ad hybridisation (see also Heine
and WeaireO).

Our next step is to make some model potentials designed to reproduce the bandstruc-
tures of simpler theories. We consider two models in this section. In the first, we wish to
explicitly separate out the effect of the d-bands while retaining all the other features of
the bandstructure in the local density approximation. This model will represent rather
closely the Jones theory. In order to represent the Mott and Jones theory we need a
nearly free-electron model in which the effect of the d-bands is ignored and the the band
gaps are smaller than those due to ad non-orthogonality and band repulsion.

I 4.2.1 The Jones Model

We seek a model potential with which to apply the structural energy difference theo-
rem and which as closely as possible mimics the Jones model described in section 2. We
achieve this using a procedure in which we re-calculate the potential in the atomic sphere
in the configuration 4a4p4d rather than 4a4p3d, i.e., constraining the d-wavefunction to
have one extra node. The a and p potential parameters are therefore unchanged and d
parameters are those of 4d rather than 3d electrons. This moves the d-electrons out of
the conduction band. Figure 9 shows the bandstructures and densities of states of fcc,
bcc and hcp Cu in the model potential. This closely reproduces the ap bands of figure 3
while leaving out the d-electrons, so that we can separate out the d-band effects. The
structural energy differences are shown and analysed in figure 10. The principal feature of
the electron compounds appears, namely the transitions to bcc and then hcp. However,
the stability of Cu at n = 1 is in doubt; in fact Cu is found to be bcc, with only a small
region of fcc stability around n = 1.3.

We need to understand why, although ours and Jones' model give similar looking
densities of states, the stabilities at n = 1 are different. The reason lies in the shapes
of the density of states well below the Fermi energy and in the approximation Jones'
used in his e(k) dispersion and in calculating integrals under the Fermi surface. 3 The
conventional widsom 1,17 has it that given two densities of states with two peaks due to
Van Hove singularities as in figures 1 and 10, at valence electron concentrations below the
peak in the density of states of the structure whose peak comes first, that structure will
be stable. This is only true if the two singularities give rise to peaks of similar height.

Both ours and Jones' calculations show that the bcc Van Hove singularity is "stronger"
than the fcc (i.e., it makes a greater distortion from a free-electron density of states).
This means that the bcc density of states is raised above the free-electron density of
states by a greater amount than the fcc and this effect persists to energies well below the
singularity. The consequence is that bcc is the stable phase over a wide range of valence
electron concentration between 0.2 and 1.1. The reason that Jones did not reveal this lies
in his approximate dispersion which only deviated from free-electron behaviour close to
the Brillouin zone boundaries. It is also possible as suggested by Heine and Weaire6 that
Jones' approximate method of Brillouin zone integration (the "cone approximation" )3 ,led1to errors.
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The relative "strengths" of the first Van Hove singularities in the sequence hcp
fcc : bcc seen in figure 10 arise simply from the numbers of equivalent Bragg planes I
contributing; these are respectively the {1120} prism planes in hcp, the {111} planes in
fcc and the {110} planes in bcc of which the numbers of variants occur in the ratio 6 : 8 : 12.

As in the LDA-RB model, we can apply the analysis of section 2.2 to the results
shown in figure 10. We recall that one can predict the structure of the AEband curves
from the Fermi energy differences. At the points where AeF is zero one can predict I
either a maximum or a minimum in AEband depending on whether AeF is decreasing or
increasing. We can also make the connection between Van Hove singularities and zeros in
the Fermi energy difference as follows. At a Van Hove singularity the Fermi energy does I
not increase with small increases in n. Now, we are treating fcc as the reference phase
here, so if the Van Hove singularity is in the bcc or hcp density of states then ACF will
decrease rapidly and if ACF is initially positive this can lead to a maximum in AEband
(i.e., fcc stability) if the Fermi energy difference falls to zero. If a Van Hove singularity
apears in the fcc density of states then ACF will rise rapidly and if the Fermi energy is
higher in the fcc phase then AeF may rise through zero leading to a minimum in AEband,
i.e., instability of the fcc structure. This effect can be clearly seen in figure 10. At the
bcc and hcp Van Hove singularities AeF falls rapidly through zero leading in turn to
maxima in AEband. The fcc singularity at L1 causes sharp increases in both bcc and hcp
AEF; only in the hcp case does this cause AeF to go through zero-this is the origin of
the minimum in the hcp-fcc AEband curve and the stability of hcp Zn. Again, this is
associated with a low hcp density of states when the fcc and bcc density of states rise
rapidly through the L1 and N1, Van Hove singularities.

We can now see the origin of the stability of bcc and hcp in our reproduction of Jones' I
model. In the region of valence electron concentration between 1.2 and 1.7 the fcc density
of states is steadily decreasing, whereas there appear large peaks in the bcc and then hcp
density of states. These correspond to zeros in AEF and maxima in AEband: first in the I
bcc-fcc curves and then in hcp-fcc. This accounts for the successive stability of fcc and
bcc. The hcp phase is stabilised when the bcc and fcc densities of states rise sharply when
the Fermi surface encounters the Brillouin zone boundaries at N and L at the top of the
large band gap.

4.2.2 The nearly-free-electron (Mott and Jones) model I
Finally, we would like to re-create the very simplest model, namely the nearly-free-

electron case, first proposed by Mott and Jones and usually described in textbooks as the
rationale behind the theory of the stability of /-phase alloys. We require this to be a model
without any effect of d-electrons and having small gaps at the Brillouin zone boundaries.
We can generate a bandstructure displaying these features using the potential parameters I
given in table 1. The resulting bandstructure and densities of states are shown in figure 11 .
The band gaps are now similar to those in a nearly-free-electron metal such as Al. The
structural energy differences and their analysis are shown in figure 12. We conclude that I
the nearly-free-electron picture is not able to predict a transition to the bcc #-phase. In
fact Cu is predicted to be hcp as is found in pseudopotential perturbation calculations,
and this is seen to be due to the free-electron sphere first making contact with a Brillouin I
zone face (at M) in the hcp structure. Note that in the real life bands of figure 4, the
effect of the singularity and small band gap at M is to deplete the density of states in l
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the hcp phase making Lcp the least stable phase at low valence electron concentration.
In the nearly-fre-electron case, because the Fermi surface at n = 1 is well inside the first
Brillouin zone in fcc and bcc structures, the hcp phase is stable in Cu although the band
gap at M is small.

5. SUMMARY AND CONCLUSIONS

We have attempted to clear up some of the confusion surrounding the theory of
electron compounds. This has involved making self-consistent bandstructures in the local
density approximation and using these in conjunction with the structural energy difference
theorem and the rigid band approximation to address the problem from a rigorous point of
view. We have then systematically removed, firstly the explicit appearance of the d-bands
and secondly the very large band gaps at the Brillouin zone faces in order to recover two
of the earlier theories.

Within the rigid-band approximation the structural energy difference theorem tells
us that the bandstructure is responsible for energy differences if the bands are generated
from frozen potentials. Then it is obvious that within this first-order approach the shapes
of various Brillouin zones must eventually be determining phase stability. This fact, cou-
pled with our plausibility arguments at the end of section 2.2 gives in our view a general
explanation of the Hume-Rothery electron compounds of noble metals alloying with el-
ements from groups 13, 14 and 15. The appearance of rather constant valence electron
concentrations at the phase boundaries in these alloys then arises as a consequence of
the approximate validity of the rigid band model and the similar features in the band-
structures of the noble metals (in particular they all have a Fermi energy above the L20
singularity).

Our other conclusions are as follows.
1. In the specific case of Cu alloys, the sequence of phase transitions as the valence

electron concentration varies between one and two can be attributed to features in the
electronic bandstructure. These are not the features that have previously been thought
responsible, namely the singularities arising when the Fermi surface first makes contact
with the Brillouin zone boundaries. Hybridisation with the d-bands moves the Fermi
energy well above these singularities even in pure fcc and bcc noble metals. The fcc
ground state of Cu is a direct consequence of the presence of the shallow d-band.
As shown in section 4.1, both the stability of fcc Cu and the transitions to bcc and
then hcp can be attributed to specific features arising from the shapes of the different
Brillouin zones. It is notable that the #-phase is stabilised as a result of the additional
{2001 Brillouin zone planes arising in fcc in contrast to the bcc Brillouin zone which
only has one kind of face. Stabilisation of hcp above n = 1.6 arises as the Fermi energy
moves above the bcc and fcc band gaps.

2. The predictions of the Jones model are qualitatively correct, although the positions of
the phase boundaries are too sensitive to the details of the model bandstructure for this
to be a quantitative theory. Jones' successful predictions of both the experimental
phase boundaries and the fcc ground state of Cu must be regarded as fortuitous
accidents. In the former instance, the LDA-RB approach gives much worse agreement
with experimental phase boundaries than the much more approximate Jones' theory.
The fcc ground state of Cu cannot be obtained in an sp-only model so that Jones'
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result must come from approximations either in the model dispersion or in the method
of Brillouin zone integration. I

3. The nearly-free-electron model is unable to predict the correct sequence of phase trans-
formations. Therefore while the description of the theory of electron compounds given
in elementary texts is qualitatively simple and pleasing, it cannot be demonstrated
by an explicit calculation.

4. The popular theory attributing stability to a peak in the density of states is incorrect. 3
The effect of a peak in the density of states due to a Van Hove singularity is to produce
a rapid change in the difference in Fermi energies between that phase and a competing
one. This may cause AeF to go through zero in which case the bandstructure energy 3
difference will be extremal: whether a maximum or minimum depends which phase
initially has the higher Fermi energy (in other words, whether AEF is falling or rising).
In the cases where AEband is extremal and greater than zero if a maximum and less I
than zero if a minimum, the stable phase will be the one with the smaller density of
states at the Fermi energy; furthermore, the two phases will have equal Fermi energies
at the extremum in bandstructure energy difference. Only under these restrictive I
conditions can the densities of states at the Fermi energy be used as a measure of
structural stability.
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TABLE 1: LMTO potential parameters for self-consistent Zn and Cu and for Cu in 3
the Jones, and Mott and Jones models (see text). C and A are the band centre and
width parameters; -f measures the distortion from canonical bands and 1/4"p is the third
order parameter whose magnitude indicates the range of energies about the centre of the
occupied band in which the linear method is accurate. Vmtz is the muffin-tin zero and is
needed to construct the combined correction matrix. The Wigner-Seitz radius is 2.748
bohr. -f is a number; all other quantities are in Rydbergs.

C A 1 1/y/ Vmtz U
self-consistent Zn s -0.5347 0.1442 0.4129 3.3266

p 0.3983 0.1371 0.1078 4.9128
d -0.5868 0.0054 -0.0005 0.4899

-0.7257

self-consistent Cu s -0.4280 0.1527 0.4205 3.7893
p 0.5143 0.1465 0.1113 5.4501
d -0.3132 0.0078 -0.0031 0.5614

-0.6937 3
Jones model Cu s -0.4280 0.1527 0.4205 3.7893

p 0.5143 0.1465 0.1113 5.4501
d 2.0776 0.1247 0.0437 4.0860 I-0.6937

Mott & Jones model Cu s -0.4630 0.1324 0.4000 2.3829
p 0.6251 0.1501 0.1125 5.6633 I

-0.6036 I
I
I
I
I
I
I
I
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FIGURE CAPTIONS

FIGURE 1: illustrates Jones' theory. (a) The density of states of fcc and bcc Cu. The
vertical line shows the Fermi energy in fcc Cu in Jones' model. (b) The fcc-bcc energy
diiference as a function of valence electron concentration calculated by Jones Note that
the peak in the fcc density of states occurs at n = 1, and in the bcc at n = 1.2. (a) and
(c) after Jones3 (c) Qualitative sketch of typical densities of states. Energies el and C2
mark the common Fermi energy for phases F, P and F, B respectively, for which the
bandstructure energy difference is extremal.

FIGURE 2: (a) fcc, (b) bcc and (c) hcp Brillouin zones. (After JonesI I)

FIGURE 3: Self-consistent local density approximation bandstructures in fcc Cu and3 Zn. To the left are shown the corresponding densities of states. Note how the analytic
quadratic method clearly picks out the Van Hove singularities in the bandstructure. Here
and in the next two figures the density from the d-bands is not shown in full as it rises to
nearly 100 states/Ry/spin (see Moruzzi et al.26), dwarfing the structure relevant to the
present study. In this, and subsequent bandstructures, the position of the Fermi energy
is indicated by a horizontal line.

FIGURE 4: Bandstructures and densities of states in fcc, bcc and hcp Cu using the
frozen potential from self-consistent fcc Cu. Only the energy range above the d-bands in
shown here. Symmetry points are those shown in figure 2.

FIGURE 5: Densities of states of fcc and bcc Cu superimposed to show the relation-
ships between the important Van Hove singularities. Searching for those n at which fcc
and bcc have the same Fermi energy leads to the two values indicated by vertical broken
lines. At these points fcc and bcc respectively are at their most stable, the stable phase
being that having the lowest density of states at the Fermi energy. The differences indensities of states can be attributed to interactions between the Fermi surface and the
Brillouin zone planes marked in the figure.

3 FIGURE 6: bcc-fcc and hcp-fcc bandstructure energy differences using the rigid band
structural energy difference theorem. Two frozen potentials have been used (see table 1):
(a) self-consistent Cu potential, (b) self-consistent Zn potential. Crosses are the end-point
total energy differences calculated selfconsistently within the local density approximation.

FIGURE 7: (a) The Cu-Zn phase diagram. 31 (b) Free-energy-composition curves
based on the data in figure 6(a). The curves are sheared using Zener's device: nbcc is the
valence electron concentration at which the two phases joined by the common tangent
have the same energy, denoted Ubcc; and u cc is the slope of the bcc curve at n = nbcc. A
common tangent shows the positions of the zero-temperature phase boundaries deduced
from the rigid band structural energy difference theorem. They cannot be interpreted
in terms of the actual phase diagram since the a/-'y equilibrium is not considered here;
however, we show them to compare with Jones results.3,30

FIGURE 8: Analysis of the phase transitions in the rigid band structural energy
difference theorem. (a) is the same as figure 7(b); (b) density of states as a function
of valence electron concentration; (c) Fermi energy difference as a function of valence
electron concentration. The units of energy we use in this paper are Rydbergs (IRy -
13.6eV, and lmRy/atom = 1.23kJ/g-atom).
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FIGURE 9: Bandstructure and density of states using our parameters for Jones'
model (table 1).

FIGURE 10: As figure 8, but with the band parameters of the Jones model

FIGURE 11: Bandstructure and density of states using our parameters for the Mott
and Jones model (table 1).

FIGURE 12: As figure 8, but with the band parameters of the Mott and Jones model.
Note the oscillations in the hcp density of states due to band crossings.
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AbrwL Phase stability in the Ni-Al binary system is investigated using linear muffin-tin

orbitals total energy (ImTO) calculations. They provide total energies for the different
existing compounds and, using Connolly-Williams inversion, the many-body interactions
occurring in the rcc and 3C laittces. These interactions are used in conjunctio with the
Cluster Variation Method (cvM) to calculate the phase diagram. The computed phase
diagram agrees very well with the experimental one.

I. Introductiom

The modern theory of phase diagram calculations has been made possible by great
advances in band-structure calculations, the theories of the configurational thermo-
dynamics and phase transformations. Total energy calculations based on the local
density approximation (LA) are now sufficiently accurate to explain many properties
of materials in terms of the underlying electronic structure [1]. An accurate calculation
of the configurational free energy of the alloy is possible within various approximations
such as mean field methods (Cluster Variation Method, cvM) or by numerical methods
(Monte Carlo simulations) [2, 31. In these models, it is assumed that the internal energyIJ can be written as a sum of multi-site interactions which converge rapidly. The fact that
these interactions can be derived from first-principle calculations establishes the basis
of a comprehensive first-principles theory of cohesive, structural and thermodynamical
properties of metals and alloys. Two extreme types of approach to the calculation of
these interactions have been developed; the first one starts from the energy of the
completely disordered solid solution calculated by the coherent potential approximation
(cPA) [4]. The effective duster interactions are calculated by the Embedded ClusterIMethod [5] or by the Generalized Perturbation Method (opm) [6J using a perturbative
treatment about the completely disordered state. In this case, the ordering energies can
be written as an expression in terms of concentration-dependent nth-order effective
cluster interactions. oPM can be developed with the first-principles multiple scattering
formalism of the Korringa-Kohn-Rostoker coherent potential approximation [71; how-
ever, to our knowledge, n1o phase diagrams have yet been provided by this approach
although, in the framework of the tight-binding approximation, interesting results have
been obtained [8-10).

3 0953-9@q9l409 + 15 04.50 01992 lOP Publishing Ltd 945
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T,: second approach is the so-called Connolly-Williams inversion [11] and the

closely related E-G approach [121; here, the total energy is assumed to be written as a 3
sum of configuration independent many-body interaction potentials multiplied by the
multi-site correlation functions. The sum runs over all the cluster types and, in practice,
it requires the existence of a maximum cluster beyond which the many body interactions
are supposed to be negligible. This procedure has been used successfully by several
authors [13-151 and we will adopt it here. The Ni-Al system presents both theoretical
and technological interest, the aluminides having many desirable properties such as low
density, high melting temperatures and high yield strength. I

From a theoretical point of view, Sigh and Sanchez [16] have shown that a CVM
treatment using effective pair interactions determined from available thermochemical
data was able to give a good representation of the phase diagram. Several quantitative
total energy calculations [17-20] have also been performed for ordered AINi compounds
using linearized methods [21]. All these calculations conclude that a strong hybridization
between the p states of Al and the d states of Ni leads to the formation of bonding and
antibonding states well separated by a pseudogap in the electronic density of states. The
same trend has also been found using Tight Binding arguments [221. A few calculations
have treated more subtle effects such as the relative stabilities in Ni 3AI compounds [18];
van Schilfgaarde et al [23] have shown that non-self-consistent total energy calculations I
can be applied to this problem: they employ the linear muffin-tin method [21] using two
different approaches. In the .first approach, within the atomic sphere approximation,
they employ an analogue of the local force theorem [24, 25], in which the total energy
difference between two structures comprises the band-structure energy plus small Cou-
lomb corrections. In the second approach, they make no shape approximations to the
potential and employ a recasting of the local-density functional proposed by Harris and
Foulkes [26]. All these results are in good agreement with experimental determinations I
of the energies of formation of Ni-Al comounds [27], which is the primary condition for
the phase diagram determination. For the second approach, i.e. calculations of the
cluster interactions, a series of results has been proposed by Carlsson, using Connolly- I
Williams inversion [28, 29] with a resummation scheme which leads to concentration
dependent effective pair interaction (EPI). These so-obtained EPI are qualitatively com-
parable to the ones obtained from mean field methods based on multiple-scattering
theory [30] and give very short-ranged interactions and strong ordering tendencies. A
tight-binding approach based on the Cluster Bethe Lattice Method (CBLM) has also been
used and gives EPI values very close to Carlsson's ones [22].

The purpose of this work is to present a complete calculation of the phase diagram I
of the binary NiA! system combining the tetrahedron approximation of the CvM and the
linear muffin-tin orbital method (LMTo). This determination requires the knowledge of
SRO in solid solutions based on BCC and FCC underlying lattices, the stability of the
different compounds in the binary system and the liquid phase. The paper is organized as
follows. In section 2, we present a brief review of the quantum and statistical mechanical
approaches used in our calculations. In section 3, we present the results of our cal-
culations and compare them with the experimental ones.

2. Free energy model

In order to compute a phase diagram, we need to know the total free energy of the binary
alloy in a given phase, then its energy and also its entropy of formation. 3

I
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For the alloy in phase cr, the total free energy may be written as

FO = (1 - c)F" + cF* + Ef - TS (1)

where c is the concentration of the B element, Fla, the free energy of pure element I in
phase at, E7 and Sf' are respectively the enthalpy and entropy of alloy formation.

The first simplifying assumption regarding the evaluation of this total free energy is
to assume that the free energy for the pure elements can be written as

I P = Er- TSr (2)
in which the cohesive energy Ell and entropy Sr are both temperature independent.

The second assumption assumes that Sf' is a purely configurational term, which
means that the remaining entropy depends only on the concentration via the first two
terms on the right hand side of (1).

3 2.). Energy of formation

It has been shown in the introduction that to perform phase diagram calculations, the
internal energy of an A-B alloy is assumed to be described in terms of a rapidly
convergent series of concentration-independent multi-site interactions. More precisely,
we assume that the total energy of a particular configuration a is expressed by [311

3 E(r&(r) = r) (3)

Vy(r) is the concentration-independent multi-site interaction associated with the multi-
site correlation 1 defined as (321

= (1/Ny) . ,'0.72 ... O.,IR
where o. = I - 2p., takes the values +1 or -1 depending on the occupancy of site n,
Ny is the total number of y-type clusters, and the sum runs over all y-type clusters that
can be formed by combining sites on the entire crystal. The total energies and the multi-
site interactions are generally lattice-parameter r (or volume) dependent.

Given (3), the interactions are determined by an inversion of the sum for a finite

number of configurations defined by the existence of a maximum cluster Y, beyond
which the multi-site interactions vanish.

Hence, from a finite number of total energies for ordered structures and by truncating
the summation in (3), a set of multi-site interactions is obtained from

SVy(r) - ( -I Eff(r) 0 < Y < Y.
(4)

Vy(r) =0 Y'.a < Y<

0 is the empty cluster.
Of course, one performs total energy calculations of as many ordered structures as

there are unknown multi-site interactions required by the truncation but it is clear that,
in this approach, this truncation leads to a non-uniqueness of the cluster interactions
[321. However, if the concentration-independent multi-site interactions decay rapidly,
one can expect that this difficulty becomes minor and then in practice, the interactions
can be uniquely computed.
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In a series of papers, [28, 29, 33], Carlsson has computed cluster interactions for FCC

and BCC alloys of aluminium with transition metals using Connolly-Williams inversion.
For FCC calculations, he used A-FCC, B-Fcc, A 3B-L12, AB3 -LI;, and AB-LI 0 with
ideal c/a ratio. Only first-nearest-neighbour pair interactions, triangle and tetrahedron
cluster interactions are included. For BCC calculations, he takes A-BCC, B-BCC, A3B-
DO 3, AB3-DO 3, AB-B2 and AB-B32. In this case, first- and second-nearest-neighbour
pair interactions, triangle and tetrahedron cluster interactions are taken into account.
He finds that this truncation is a reasonable approximation for these systems; for a Ni-
Al system, the convergence of the cluster expansion appears to be very rapid, three- and I
four-atom terms having 15% and 5% of the magnitude of the pair terms [28]. This result
is confirmed by the results for the effective pair interaction obtained via the Generalized
Perturbation Method applied to the Korringa-Kohn-Rostoker multiple scattering for- 1
mulation of the Coherent Potential Approximation (KKR-CPA) which finds roughly a
factor of ten reduction at the second-neighbour distance [30].

Carlsson has also shown that it is possible to convert multi-site interactions into
concentration dependent effective pair interactions [28). They are obtained by making
a truncated approximation in the higher-order correlation functions, using only the pair
correlation function. Even if this development suffers from a loss of accuracy, the
effective pair interactions present advantages in their ease of interpretability and their I
practical usefulness.

Then, using first-principles total energy calculations, we are able to compute the
energies of formation of stoichiometric compounds occurring in the studied phase I
diagram and the multisite interactions allowing us to treat short-range order in the
FCC- or Bcc-based solid solutions or ordered superstructures presenting an extended
concentration range. I

2.2. Configurational entropy I
As for the energies of formation, different configurational entropy approximations
depending on the nature of the phase being considered are used. For the strictly stoi-
chiometric compounds, the configurational entropy is taken equal to zero. For the
solid solutions, or ordered phases presenting an extended concentration range, the
configurational entropy is described by means of the cvm. The CVM entropy is found to
be approximately given by a sVm of the partial cluster entropies [34]. The maximum
cluster used in our study is the tetrahedron containing first and second neighbours in the
Bcc lattice. In the tetrahedron approximation, the entropy of a BCC disordered system
is given by [16] 1

( (2) In yV'2) + 4Y ; v'I(1)I
SCC= = -kb (6 w#k In wqI - 12 t0 In tok + 3 . y -yo ny

qk ikik A

+ x In x) (5)
(2) (1)

where wo,, t,,Y, y ,YPk andxidenote, respectively,the probability of finding tetrahedra,
triangles, second-neighbour pairs, first-neighbour pairs and points in the configuration
given by the subscripts (i equals A or B in a binary alloy). 3
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For the disordered FCC structure we have

S cc = -kb (2 7 wod In wokI - 6 7 yl) In y5.) + 5 1 xin x). (6)
i Lk i k i

The cluster probabilities are related by the following consistency relationships

t1 k = Wq l, (7a)

II
y ) =w#l (7c)

ik

x,= w 9tj. (7d)

For the case of an ordered phase present in a range of concentration, long-range order
is described in the usual manner by means of sublattices reflecting the symmetry of the
ordered structure. A given cluster may now consist of points in the crystal belonging to
different sublattices and their probabilities have to be distinguished accordingly (see1 [351 for more details).

2.3. Liquid alloys

Liquid alloys may also display SRO as has recently been shown for liquid Al8Ni20 alloy
[361 and it is essential to consider SRO whcn determining the thermodynamic data. The
best way to perform such calculations is to use a variational method with, as a reference
system, a mixture of hard spheres which all have the same diameter but different charges
and which interact through a screened Coulomb potential [37). This reference system
has been found, coupled with pseudo-potentials or TB-CBLM, to describe well the struc-
tural and thermodynamics manifestations of ordering in disordered alloys [381. Very
recently, it has been shown, using a tight-binding description of the total energy of the
alloy [39] that, for the thermodynamic quantities, similar results are found for transition
metal-based alloys if the liquid configurational free energy is approximated by the
tetrahedron approximation of the CVM free energy in the disordered Fcc structure. We
have kept this approximation to describe the Ni-Al liquid phase in the present work.I
2.4. Phase equilibrium

In order to determine the equilibrium phase diagram, it is more convenient to minimize
the grand potential 9 given by

Q = F- I, (8)

where p is the effective chemical potential. In the present work, the minimization of the
grand potential is carried out with respect to a set of independent configurational
variables and the variable r, since effective cluster interactions are also a function of the
lattice parameter; in the use of the tetrahedron approximation, these configurational

1
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variables are chosen to be the tetrahedron probabilities wok1 at constant temperature T
and effective chemical potential p, taking into account the normalization constraint U

Wykl = 1. (9)

This minimization is done using the Natural Iteration (NJ) method developed by
Kikuchi (401. The Ni equations used in the present model have been presented elsewhere
[16] and will not be repeated here.

The equilibrium phase diagram between the two phases I and II is computed using
the same scheme as proposed by Kikuchi and Murray (41]. For the same initial value of
the effective chemical potential/p, the grand potentials of phases I (0,) and 11 (911) are
calculated using the procedure described above. If ill = Q1, the equilibrium conditions I
are realized, but if not, the value of u is modified until I1, = Qn-.

3. Results for the Ni-Al system

The Ni-Al phase diagram displayed in figure 1 is characterized by a liquid phase, a FCC

(A 1) phase at both the Al and Ni rich ends, a non-congruently melting compound AI3Ni
and three intermediate phases with a variable range of solubilities AI3Ni2, AINi and
AINi 3. Several attempts have been made to describe the NiAI phase diagram. As already
mentioned, Sigh and Sanchez (161 have shown that the tetrahedron approximation of I
the CVM is an appropriate system to describe the phase diagram of this binary system.

In that case, EPI were determined from experimental thermodynamic data and
available phase diagram information; these Ept are in good agreement with the ones I
determined by Carlsson [28] and Colinet etal [22] using quantum mechanics arguments.

3.1. Ground states at zero temperature 3
As a first step, we have calculated the energies of formation of the four intermediate
phases observed in the equilibrium phase diagram. In the structurbericht notation, these
phases are called the orthorhombic DOe (A13Ni) phase, the hexagonal D513 (AI3Ni 2) I
phase, the cubic B2(AINi) phase and the cubic LI 2 (AINi3) phase. We have also selected
two other FCC superstructures, L12(AI3Ni) phase and L10(AINi) phases and three other
BCC superstructures, D0 3(AI3Ni), D03(AINi3) and B32(AINi) phases. All these cal- I
culations allow us to check our prediction of the correct ground states and also to extract
multi-site interactions to study the B2 (AINi) and L12 (AINi3 ) phases, stable over an
extended concentration range and described as sRo-phases. We mention that although
the hexagonal D513 phase is experimentally reported to be stable over a small con- I
centration range, it will be described as a stoichiometric compound.

To calculate the energies of the different phases, we have employed the all-electron
total energy local density formalism as carried out with the linear muffin-tin orbital U
(Lmro) method (21]. The LMTO calculations have been done in the atomic sphere
approximation, including combined corrections, as developed in the code of M van
Schilfgaarde, A T Paxton and M Methfessel (unpublished result). We have used the
parametrization of the von Barth Hedin exchange correlation energy density given by
Moruzzi et al [42]. In our Brillouin zone integrals, we use a uniform mesh of sampling
points with at least 16 divisions along each of the primitive vectors. With such a mesh,
we obtain a convergence of the absolute value of the total energy of 0.1 mRy. The same
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Table I. LMTO results for cohesive energies and equilibrium molar volumes of differenti structures in the Ni--Al system.
Cohesive energy Lattice parameterStructure Composition (kJ mol"') (au)

FC A, Ni -584.231 6.52
LI2  NiA -586.732 6.675DOn NiA -584.074 6.685
LI, NiAI -548.698 6.828
LI, NiAl, -468.407 7.185
DO,, NiAI, -469.580 7.146
A, A] -400.794 7.522

3cc A2 Ni -581.185 5.188
DO3  Ni3 Al -585.104 5.270B2 NiAl -68.112 5.413
B32 NiAI -535.162 5.426
DO, NiAI, -463.064 5.674
A2 Al -395.569 6.003D513 Ni2Ai, -536.019 7.500

I DO, NiAI, -486.543 12.350

radius value was taken for the Wiger-Seitz spheres of al the elements and we include
the spherical harmonic up to I - 2 (d orbitals) in constructing th2 basis functions.

For each structure, the total energies provided by the LMTO method are obtained for
different values of the volume, the minimum of this curve determined the equilibrium
total energy and the equilibrium volume. Moreover, the bulk modulus, which is relatedto the curvature of the total energy with volume is obtained using a fit based on
Murnaghan's equation of state [431. In table 1, are calculated equilibrium cohesive
energies and molar volumes of all the considered phases. We recall that the cohesive

I
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energy is defined as the difference of the total energy of that phase and the total energy
of the constituent atoms at infinite interatomic distances. The ground states of both Ni I
and Al are predicted to be FCC. The energy difference between the FCC and BCc struc-

tures, defined as AEcm,-.cc = E - E ch, is 3.046 U mol- and 5.224 U mol - I for
Ni and Al respectively. We mention that the value of the structural energy difference
for A] is very close to the one obtained by FLAPW calculations 1151. Figure 2 shows results
for the formation energies as a function of composition for all the studied compounds.
These formation energies are defined as

AE = E..h - XNE.c(N i) - xuErcc(Al). (10)

At the equiatomic composition, the calculated formation energies of the competing
phases, i.e. B2, B32 and Ll 0 phases, strongly favour the B2 phase in complete agreement U
with experimental data. The computed value for AEof -75.6 U mol - is more negative

than the experimental value, -58.8 IJ mo1- [27]. However, our result is in complete
agreement with other theoretical determinations [17] but this phase is known to present
anti-sites and vacancies even at the equiatomic composition, factors which are not I
considered in these calculations. For 75% of Ni, the L12 phase is predicted to be more
stable than the DO 3 phase, both being more stable with regard to a mixture of the Ni-
Fcc and NiAI-B2 phase. The computed value for AE of -48.36 U mol-1 compares well
with the experimental value, -41.0 U mol- I. For 25% of Ni, the L12 phase is found to
be yet more stable than the DO 3 phase, but its value is located well above the line
connecting the formation energies of Al-FCC and NiAI-B2 phases. In fact for this
composition, the most stable structure is the DO orthorhombic phase, a result which
is also obtained in our calculations. Its calculated formation energy, -39.89 U mol - I is
in complete agreement with the experimental value, -37.7 U mol- I.

At 40% of Ni for which the hexagonal D513 phase is experimentally reported to be i
stable over a small concentration range, there is no superstructure based on the BCC or
FCC lattice. However, it is predicted to be more stable with regard to a mixture of NiAI3-
DO20 and NiAI.-B2 phases since the calculated formation energy, -61.85 U atom - ',
close to the experimental one, -56.5 U atom - ', is just above the line connecting the
formation energies of both DO20 and B2 phases.

3.2. Cluster interactions and disordered alloys

As already mentioned, the concentration-independent multi-site interactions can be
extracted from the total energy calculations using the Connolly-Williams inversion
method.

In figures 3(a) and (b) are presented cluster interactions obtained for the FCC and
BCC lattices as a function of the volume. These results reveal a very small difference I
between the FCC and BCC interaction parameters. V0 and V, display a strong volume
dependence. The shape of V0 is similar to the one of the E(V) function since V0 is given
by a sum of the energies of the different superstructures occurring on a given lattice.
The shape of V, is essentially due to the fact that the two alloying elements present two
different volumes. Let us mention that the strengths of V3 and V4 are much smaller than
that of V2, indicating a reasonable degree of convergence already at the four atom
supercell level. At this level of discussion we recall that in the tetrahedron approximation I
of the Connolly-Williams method for FC-based structures, the Li 2 and DO structures
display the same correlations and then are degenerate. LmTo results provide that
for xNi = 0.25, ELI2 - EDo,2 = +l.17k Umol - while for XNi = 0.75, ELI2 - EDO 2

I
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Fiure 3. Custer interactions as a function of the volume (a) Fcc lattice; (b) ncc lattice.

-2.66 k mol - . These two differences are small indicating also that the tetrahedron
approximation is reasonable. It is interesting to compare the results obtained by LmTo
calculations to the ones provided by GPM-KKR-CPA [30) or TB-cBLM [221 approaches. This
can be done by calculating the disordered energy and the effective pair interactions as a
function of composition.

The disordered energy is obtained using the fact that the pair and higher order
correlations are given as products of the point correlations for the totally disordered
state. Fo: the FCC and ncc-based structures, all atomic positions are equivalent and we
have:
ha I = ( ")Y (11)

where n7 is the number of sites contained in the y cluster. The energy of the disordered
configuration is then given by

E = Z vy(,)"y. (12)
V

Comparing cluster interactions from the CvM and effective pair interactions from
GPIM or CBLM can be done using a resummation of the higher order cluster interactions
at fixed concentration, corresponding to a lowest order expansion of the total energy in
powers of the short-range parameters [28).

With the set of clusters used in our calculations, we obtain for the FCC lattice
V = i(V 2 + 3V 3 1 + 6V4W4) (13)

and for the BCC lattice:

V')'= j(VA1 ) + 2V 3 1 + 4V4 )

V2 2)' = 1(V(22) + V3 , + 2V4,91) (14)

where the effective pair interactions Vj are defined as

V9 = I(VA + VB - 2VA) (15)

VAA, V3B. VAB are pair potentials evaluated at the separation between first-nearest
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neighbours for the Fcc lattice and first- and second-nearest neighbours for the Icc

As already mentioned by Carlsson, the E.! dependence as a function of the con-
centration is given by a higher order cluster than the pair here, triangle and tetrahedron.
Two distinct approaches are used to obtain the concentration-dependent Em: (i) the
'locally relaxed' treatment for which each cluster in the alloy is able to relax to its
preferred lattice constant; (ii) the 'frozen lattice' treatment where each duster is cal-
culated at a fixed lattice constant. We use the 'locally relaxed' treatment of the lattice
relaxation effects, which is considered to be more accurate than the 'frozen lattice'
treatment [28]. In figure 4 are displayed values for the first-nearest-neighbour inter-
actions on the Fcc lattice as a function of j (with , equal toxNr-xA). Our results are ofcourse very similar to Carlsson's ones since the augmented-spherical wave (Asw) andLiro methods used to calculate total energies are essentially the same. Tight-binding

based results present the same concentration dependence [22], and a large positive value
of V29 at the Ni rich end, consistent with the very strong ordering tendency in Ni3AIwhich remains ordered up to its melting point; at the Al-rich end, the value of V2 dropsrapidly.Our calculated Epi also display a semiquandtative agreement with tight-binding I
ones, V.c being equal to 2.84 k, 7.02 kJ and 10.34 kJ for XNI = 0.25, 0.5 and 0.75,
respectively, while they are equal to 2.65 UI, 4.58 UI and 7.0 kJ in Colinet's approach.
Another instructive comparison can be done with Ei determined by Turchi et al [30]
in Ni-Al alloys around an equiatomic composition. These authors found ,(') I(9c) = 8.20 k for xNj = 0.5 compared to 9.97 k extracted from LmTo calculations or
to 6.75 kJ obtained by Colinet et at [221.

In fact, Carlsson's resummation procedure corresponds to a high temperature expan- I
sion of the correlation functions and may be considered to be a good approximation to
describe effective pair interactions in the liquid phase. For this kind of liquid alloy,
experimental results based on neutron diffraction experiments [36, 44 have shown that

1
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A-A and B-B distances are quite similar in the alloys but different from the nearest
distances in pure liquids. Moreover it has been found that the local coordination is
roughly equal to 11, very close to the Fcc-coordination. Then, for each concentration,
E& and VO used to describe the liquid part are obtained from (12), (13) at a fixed given
volume. However, for each concentration a new volume is used. The concentration-
dependent volume is taken to be similar to the one obtained for the FcC-based solid
solution which displays a similar variation to the experimental one seen in the liquid
phase [45]. Another argument to justify this approximation is that if the pair interactions
of the Fcc and scc lattices come out similarly, then they are not sensitive to the underlying
lattice (at least for the Ni-Al system).

In figure 5 are plotted these values of the V2 as a function of the concentration. By
comparison with the EPI obtained by the 'locally' relaxed treatment on the Fcc and Bcc
lattice, we can see that these new values of V2' display a smoother variation as a function
of the composition.

The same conclusion is reached from the comparison of the random energy obtained
in the locally relaxed treatment for the FcC and 8cC lattices with the values obtained by
this new treatment. From figures 4 and 5, we see that the three curves display negative
values at all concentrations; the minimum is shifted towards the Ni rich part for the twoI curves obtained by the 'locally relaxed' treatment. The third curve displayed in figure 5,
and used to describe the liquid phase, presents a more symmetrical shape.

3.3. Phase diagram calculations

Let us sum up the strategy of our calculations.

(i) The energies of the four compounds occurring in the phase diagram are obtained
as a function of the volume. The minima of these curves are chosen to obtain the3formation energies of these compounds. The entropies are considered to be equal to
zero for the strictly stoichiometric compounds such as AI3Ni, AJ3Ni2 phases. For AINi
and AINi 3 phases, the entropies of configuration will be given by the tetrahedron
approximation of the CVM for ordered phases based on the FCC or 8CC lattices.

(ii) The two solid solutions based on the FCC and BCC lattices are described as short-
range-order solutions using the cVm treatment in its tetrahedron approximation. The
cluster interactions are obtained as a function of the volume using the Connolly-Williams
approach.

(iii) The difference in energy between FCC and BCC structures are taken from LMTO

results.
(iv) The liquid phase is also described as a short-range-order phase using the tetra-

hedron approximation of the CVM free energy in the disordered FCC structure. The
effective pair interactions are obtained from Carlsson's resummation procedure which
corresponds to a high temperature expansion of the correlation functions. Although this
model is developed with a solid-state approximation, it does a good job of describing
the influence of chemical short-range order on the thermodynamic properties of the
liquids [39, 46]. Of course, the continuous phase space of the nucleii's motion andIstructural information, such as pair correlation functions, are lost. However, the chemi-
cal ordering contribution to the entropy and the energy, which are quantities of central
interest in our calculations, are only proportional to the concentration fluctuations.
Using a statistical approach based on a 'discretized mesh' rather than the continuous
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phase space of the nucleii's motion may be considered as correct to describe the con-
centration fluctuations.

However, there is still a 'missing link' in our approach which is the thermodynamic
properties of the pure metals or, in other terms, the difference in free energy between
the liquid and crystalline phases. Although the density functional theory has made
significant progress in the modelling of liquids, application to the determination of the U
melting temperatures does not yet appear possible. Therefore, we have chosen to use
thermodynamic compilations to obtain melting temperatures T11'-4 and the latent
heat of melting AErc -'q for both Ni and Al elements [47). In this case the free energy I
of these elements in their liquid state is given by

Ffq(T) = E P c + AEf cc -14 - T(AE 'l)/(rTcc ). (16)

If only Fcc-based equilibria are considered, the phase diagram of figure 6 is produced. I
Of course, only the Ni-rich portion can be directly compared with experimental results
since for Ni concentration less than 0.75 structures other than FCC-based superstructures
appear. The main features of the diagram are a miscibility gap (Mo) with a maximum I
temperature of 2630 K and two ordered phases Li 2 and Li0 with transition temperatures
of 2820 and 3135 K respectively. As already mentioned by Carlsson and Sanchez [481,
the MG is caused by an elastic instability and can be understood through the concentration
dependence of the calculated energy of mixing for the completely random FCC solid
solution. AEd is negative at all concentrations like the curves obtained with the 'locally
relaxed' treatment (see figure 4) but here its curvature is negative for Ni concentrations
less than 30%: this curvature is due to the peculiar volume dependence of V 2, V 3 and I
V4 , and another way to come to the same conclusion is to compute the phase diagram
ignoring volume effects altogether. In that case the diagram displayed in figure 7 strongly
resembles the previous diagram except for the Mo on the Al-rich side. I

When the families of both FCC and acc-based free energy curves are combined with
the stoichiometric Ai3Ni and A 3Ni 2 compounds and the liquid phase, the phase diagram
of figure 8 is obtained. All the main features of the experimental phase diagram (see 3

1
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figure 1) have, at least qualitatively, been reproduced. The quantitative agreement is

not as good.

(i) The B2 phase is found to melt congruently at T = 2600 K, before undergoing a
disordering reaction. Its overestimate of the melting temperature seems to be attribu-~table to the overestimate of the heat of formation of the B2 compound. However, in a

more recent paper [49] Desai gives an experimental value of the heat of formation of
the NiAI compound equal to -71.65 U mol-1 which is very close to our calculated value.
He mentions the difference between the experimental values but no explanation is
provided. Then the origin of the discrepancy of the calculated phase diagram with the
experimental phase diagram in this region is not clear. Let us recall that this compound
is known to present antisites and vacancies even at the equiatomic composition, factors
which are not considered in these calculations.

(ii) The computed phase diagram exhibits two eutectics, one at the Al-rich side and
another at the Ni-rich side, just like the experimental phase diagram. The calculated
eutectic temperatures are in relatively good agreement with the experimental ones since
they have been found equal to 900 K at the Al-rich side and 1680 K at the Ni-rich side
(compared with 913 K and 1658 K respectively).

I (iii) The two complex DO and D513 structures are found to melt peritectically. For
the AI3Ni compound, the peritectic temperature is some 27 K lower than experiment
indicates but for the AI3Ni2 compound it is 56 K higher than the experimental one.

Our calculations lead also to a peritectic decomposition of the Ni3AI compound.
More particularly, the eutectic between the solid phase AI, Ni3 AI(L12) and the liquid
one takes place on the right of the peritectic, which is in agreement with the usually
adopted phases diagrams. However, let us mention that this part of the phase diagram
is very sensitive to the values of the energies of the three phases which determine the
equilibrium properties. From an experimental point of view, we point out that the phases
boundaries of the peritectic decomposition of the Ni 3A! compound are still controversial.
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4. Conclusion 3
It was shown that ab inihio calculations of the Ni-Al phase diagram are, in many points,
in agreement with experimental information. They have been obtained by combining
total energy uMTO calculations with the tetrahedron CVM approximation. No relaxation
and no vibrational effects have been taken into account. Only short-range order on FCC I
and BCC lattices have been introduced using cvM treatment in competition with the
occurrence of complex phases like the DO2 and D513 phases. The thermodynamic
description of the liquid phase has been achieved by approximating this phase to a FCC-
based disordered phase to minimize the number of parameters. The melting temperature
and latent heat of the pure components are the only two parameters which have been
introduced from outside the first-principles matrix. We believe that our results show

that first-principles studies of phase equilibria may now be considered as feasible with agood degree of confidence.
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Introduction

Recent interest has focused on the transition metal trialuminides as candidate phases in the microstructure of
high-temperature superalloys. They have excellent oxidation resistance, and the ordered, intermetallic compounds
should have good high-temperature strength as do conyentional cobalt and nickel based alloys. However, the

compounds so far studied all suffer transgranular failure at room temperature, both those with cubic (LI 2) and
non-cubic crystal structures (D022, D023 and D0 19 ). We need to understand and predict firstly the crystal structure
adopted by transition metal trialuminides, and secondly their susceptibility to cleavage fracture. Cottrell (1) has
shown that the latter can be rationalised within Pugh's analysis (2) and finds that a ductile crystal will have a
ratio of shear to bulk moduli, p/K < 0.4; while a brittle crystal has p/K > 0.5. This has been confirmed for the
Li 2 phases of AI3Ti and Al3 Sc (3). The stable cubic transition metal trialuminides also tend to have a negative
Cauchy pressure (c12 - c44) which indicates the effect of angular bonding forces over and above the usual radial
forces associated with the metallic bond (4). In this paper, we shall use the results of first-principles calculations
to show that, on the basis of these criteria, AI 3 Ru has a good likelihood of being the only ductile transition metal
trialuminide.

The low temperature crystal structures of the transition metal trialuminides are shown in the lower part of
fig. 1. The entry for AI 3Ru is taken from present predictions, otherwise the data come from refs. 5 and 6. We
see that whereas group 3, 4 and 5 metals form stable close-packed trialuminides; of the others only AI 3Ru formsI a close-packed phase. This is consistent with Carlsson's calculations of the three-body term, $3, in the Connolly-
Williams expansion of the total energy (7). Carlsson found that 03 oscillates across the 3d and 4d transition series,
being negative in the neighbourhood of groups 3, 4, 7 and 8; and otherwise zero or positive. This corresponds
with an observed skewing of the heats of formation away from regular solution behaviour (4, 8), stabilising the
trialuinides of Sc, Ti, V and Ru; while as seen in fig. 1, elsewhere in the transition series dose packed trialuminides
are not observed.

We devote this paper to theoretical a study of A13Ru, in the light of the above remarks. Very little is
known about the AI-Ru system. The phase diagram is only tentatively known (6). The structure of AI3Ru
is reported as D024 in Pearson's Handbook (5), with lattice parameters leading to an unphysically low atomic

volume. Fortunately, the local density approximation (LDA) to density-functional theory is known to make accurate
predictions of the crystal structures and elastic constants of crystals from first principles, and we exploit this using
a basis of linear muffin-tin orbitals (LMTOs), in three distinct approaches (9, 10). (i) Using a full-potential,
self-consistent method (11), we can obtain results corresponding to the LDA solution to Schr6dinger's equation.
(ii) In order to save computing time, we make the non self-consistent, Harris-Foulkes approximation when we are
confident that the associated errors are acceptable. (iii) For predicting structural stability of close-packed phases,
we use the atomic spheres approximation (ASA) to LMTO theory, using the structural energy difference theorem
and rigid band approximation. This also allows us to construct a model to extract general principles arising from
the electronic structure of transition metal trialuminides.

We divide the paper into two sections: crystal structure and elastic constant predictions. A final two sections
contain our discussion and conclusions.
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Crystal structures of the transition metal trialuminides I
e/a In order to calculate energy differences between com-

3.0 3.5 4.0 4.5 5.0 peting close-packed phases, we use the structural energy
15 difference theorem associated with the atomic spheres ap-

proximation (9). Beginning with a self-consistent calcu-

lation of the density of states (DOS) and atomic sphere
10 , potentials in the L1 2 structure, we transfer this trialpoten-

ial into another structure and calculate its DOS. From the
5two densities of states, we calculate the sum of occupied en-

ergy levels and subtracting these, we obtain the structural
LI2 energy difference correct to first order. It is instructive,

0 first of all, to look at the DOS in AI3Ru (fig. 2), since this
demonstrates all the principal features of chemical bonding

5 -D0...... - in the transition metal trialuminides: these are sketched
in fig. 3. At the bottom of the band the electrons have

, predominantly free-electron-like Al-s character. The three

Sc Ti V Cr Mn Fe Co Ni Cu peaks are typical of the transition metal trialuminides. The

3 2.23 2.201 +r j lower and upper peaks are bonding and antibonding hybrid
Y Zr Nb Mo Tc J JRh Pd A Al-p-Ru.d(t2 ) states.t The central peak is predominantly

o 0 2.23 o 2.01 nonbonding Ru-d(eg) (the peak is positioned just 0.05 Ry U
La H Ta W Re 10s 1r Pt Au above the centre of the d-band indicating very weak an-

0 0 2.17 tibonding character). The lower peak also has a bonding

0 DO, 0 D02 I Al-p-Ru-d(eo) contribution. In the transition metal tria- 1
SL12 0 o D023 luminides, the bonding levels are full and the antibonding

(DO2. axial ratio shown) levels empty leading to strong, directional bonding between
the transition metal and Al atoms. There is also metallic

Fig.l : The lower R2f shows those transition met- bonding mitigated by the free-electron-like Al and transi- U
als which form trialuminides with a symbol accord- tion metal s-electrons. In fig. 4, we show the DOS for Li2
ing to the legend given. The .ulmr tori shows cal- AI3Ti. Essentially the same features are present: the d-
culated structural energy differences (ImRy/atom = band is shifted to higher energy (the d-electrons become
1.2$ kJ/g-atom). The solid curves show the energies more tightly bound to the nucleus across the transition se- I
of non-cubic trialuminides relative to LI 2 as a func- ries) and the nonbonding states are empty since Ti has 4
tion of the electron concentration corresponding to the fewer d-electrons than Ru. This leads one to the develop-
transition metals in the lower part. The rigid band ment of the rigid band model (12). Here we suppose that
approximation uses the DOS of AI3 Ru in the differ- we may describe the electronic structure of the transition
ent structures, varyling e/a wnhile keeping the DOS un- metal trialumidnides using a rigid DOS, say, that of Ah3Ru;

changed, so that at the vertical broken line the calcula- and model all the transition metal trialuminides using this
tions are not approximated. The dotted line shows the DOS, varying the Fermi energy to account for the total
D022 -L12 energy difference using the Ah Ti DOS. Us- number of electrons. I
ing this DOS we can predict the structure of AhRu. Now consider the upper part of fig. 1. Using the DOS

of Ai 3Ru in four close-packed structures obtained from the
trial potential of the Li 2 phase, we have calculated the energies of D022, D024 and D0 19 (all with ideal axial ratios)
relative to L1 2. These are shown at the intersection of the solid curves with the vertical broken line. In the spirit I
of the rigid band approximation, we use the AI3Ru DOS to infer the energy ordering of all other transition metal
trialuminides which results in the solid curves of energy difference AE against electron concentration e/a. Very
much the same curves are obtained if we use the AI3 Ti DOS from fig. 4. For example, in fig. 1 the broken curve
shows the DO2 -L1 2 energy difference obtained in this way. It is remarkable that using the electronic structure
of either AI3Ti or AI2Ru, one can determine trends in the structural stability of all the other transition metal
trialuminides. Our calculations shown in fig. I are for structures with ideal axial ratio. Therefore our model is
not able to predict the structures of the group 3 and 4 trialuminides (apart from AI3Sc). These have greater than
10% distortions from ideal axial ratio. As we see from fig 1, it is this distortion that stabilises the observed phase;

tThe cubic symmetry has split the five degenerate atomic d-states into sub-bands with es (X2 - y?, 3z2 - 1)
and t2, (xy, yz, zz) symmetry.
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t Ru-d(e.) Fig.3 4 schematic drawing of the important features10 . .of the DOSs shown in fig. 2. See the tezt for details.
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tig.2: LMTO-ASA densit of states of Li 2 AhRu. AI vertical line shows the position of the Fermi energy which 01,
separates occupied from unoccupied energy levels. The -0.8 -0.4 0 0.4
lower panels show the DOS decomposed into orbitals to
demonstrate the principal features of the chemical bond- energy (Ry)
ing (see the tezt, and fig. 3). Fig.4 :Density of states in LI2 Al3 Ti. The Fermi

energy is indicated as in Jig. 2.

this is already known in the case of Al 3Ti from total energy calculations (4, 9). Very importantly, we see that
while the group 4 trialuminides are on the borderline between Li 2 and D022 and can be made cubic by alloying
(13), the group 5 compounds cannot (14).

Our calculations show that AI 3Ru has the D022 structure, not D024 as reported (5).t Furthermore, we see a
very wide region of D022 stability around this electron concentration, so we regard it as highly improbable that
AI3Ru can be made cubic by alloying.

Elastic constant calculations

We need to make the most accurate total energy calculations to calculate elastic constants (11). Not only the
band terms, as in the structural energy difference theorem, but also electrostatic and exchange-correlation terms
must be included since these do not cancel in energy differences to second order. For shear modulus calculations
we make a series of calculations of the total energy at a fixed amount of a pure strain. We vary the strain in
eleven evenly-spaced increments in the range *0.05 to obtain the total energy as a function of strain. The second
order terms are extracted by least-squares fitting to polynomials. Very stringent convergence is required since the
energy varies by typically only a few mRy over the whole range of distortions, and great care is needed if one is
to obtain a smooth fit to the data. Typically, our self-consistent energies are converged to better than 0.01mRy,

tWe should emphasise that our model is strictly concerned with trialuminides. We cannot make any statements
cc cerning phases such as A 13Fe4 which has nearly the same stoichiometry and is sometimes referred to as AI3 Fe.
A milar phase in the AI-Ru system may also exist.
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and we employ a modified tetrahedron method of Brillouin zone integration (15) using a uniform mesh of at least
183 k-points in the whole zone. The bulk modulus is calculated from nine separate dilatations in the range *0.2;
since the energy changes by much larger amounts convergence is less critical here. We divide the presentation of
our results into those for L12 and D0 22 structures. I
L1 2 structure

Although, as we have shown, AI 3Ru is never likely to exist in TABLE 1
the L12 structure, it is instructive at first to examine its three elas- Calculated Elastic Constants of
tic constants in that phase. Conveniently, these are the bulk mod- Li 2 AI 3Ru and Al 3Ti
ulus K = 1(cll + 2c 12), and the two shear constants C = c44 and
C' = J(clI -c12). In table 1, we show these, the Cauchy pressure and C C' K c12-c44 P2 /K
the ratio 12 /K where P2 = (3c 44(ctl - c2)) / (4c44 + cl - c2) is the GPa
reciprocal of the elastic compliance of a cubic crystal orientated for AI3 Ru 103 38 160 31 0.30
11121 or 11101 slip on (111) planes (16). We also show the same quan- (101) (35) (160)
tities we have calculated for A13 Ti. We see that AI3Ru differs signifi- Al3Ti 87 68 117 -15 0.63
cantly from Al 3Ti, in that it satisfies the criteria for ductility discussed
in the introduction, namely a positive Cauchy pressure and p/K < 0.4.
DO22 structure

In table 1, we have also shown in parentheses the elastic constants TABLE 2
for AI3Ru calculated non self-consistently using the Harris-Foulkes ap- Lattice Parameters of D022
proximation (9, 10). There is clearly negligible error involved, while the AI3Ru and AI3Ti
saving in computer time is considerable. For calculations in the D022
phase of AI 3Ru, we continue to use the non self-consistent approach. We a c/a
show our calculated lattice constants in table 2; and in table 3, calculated (nm)
elastic constants of AI3Ru, which we compare with the measured elastic
constants of AI 3Ti (17). Al3Ru(-) 0.381 2.01

In table 3, the last four columns show firstly the two Cauchy dis- AI3Ti ( ') 0.378 2.23
crepancies, and secondly the p/K ratios for the known slip systems in (a) Calculated in the present work
D022 alloys. p, = c, is the reciprocal compliance in ia[l10(001) slip; () Calculated in ref. (9)
and P2, with the same.expression as given above for cubic crystals, is for
a[110] slip on the dose-packed (112) planes. The former slip system is I
operative in D022 AI3Ti, while the latter is observed in AI3V (18).

TABLE 3
Elastic Constants of D02 AI3Ru and AI3Ti

1K cl c33 c12 c13 c44 c66 c13-c44 c12 -c66 01/K p2 /K
GPa

AI1Ru(-) 164 236 259 143 115 106 89 9 54 0.65 0.35

AI3Ti(b) 106 218 218 58 46 92 117 -46 -59 0.87 0.79
(a) Calculated in the present work

(A) Measured in ref. (17) I
nisclnioA

We need to answer the question, do our calculations indicate that AI3 Ru deserves some experimental attention?
It is usually supposed that only cubic intermetailics will have sufficient room temperature ductility to be useful, I
and we have seen that it is most unlikely that an Li 2 form of AI3Ru can be stabilised by alloying. Two points are at

issue here, lack of ductility due to violation of Von Mises criterion; and intrinsic lack of cleavage strength. The slip
system a[ll0](112) favoured by AI3V (and, we expect, also AI3Ru) has only four, rather than the five independent
modes necessary for general ductility; this may however be sufficient, particularly if augmented with basal slip
for which the p/K ratio is more favourable in AI3 Ru than AihTi, which is see to have a very unfavourable p/K
ratio on its chosen slip system. This would explain the brittleness of AIhTi, although we don't yet understand
what determines the choice of slip system in the transition metal trialuminides. Our calculations show significant
differences between the elastic properties of AI3 Ru and AI3Ti. The negative Cauchy discrepancies in both L12

J-4 I



I

Vol. 26, No. 4 DUCTILE TRIALUMINIDE 533

and D022 AI3 Ti indicate large angular forces and low bond mobility. In AI3 Ru, although angular forces are still
expected to play an important r6le (8), the elastic constants in LI 2 are rather similar to those of the ductile crystal
a'-Ni3A. It is important, also, to note that whereas all the known D0 22 and D0 23 transition metal trialuminides
have axial ratios 10-15% larger than ideal, AI3Ru is predicted to have an axial ratio very nearly ideal, so that the
(112) planes are genuinely close-packed. These observations lead us to expect that a ductile D0 22 alloy of AI3 Ru,
possibly with ternary additions, can be found.

An important influence will be the anti-phase boundary (APB) energy on (112) planes. If this is low in AI3Ru
compared with AI3V, then partial dislocations with half the Burgers vector of those observed in AI3V will be
responsible for the deformation, with a consequent enhancement of ductility. In future work, we will concentrate
on a comparison of elastic constants and APB energies in AI3Ru and AI3 V. This will give a better indication of
the promise of AI3Ru as a ductile trialuminide, and also assist our understanding of the choice of slip and twinning
systems in the transition metal trialuminides. ConclusionConclusions

By taking a flexible approach to density-functional theory in the local density approximation, we can make
models to infer general trends, and highly accurate calculations to predict specific physical properties of inter-
metallic compounds.

We have applied this to the transition metal trialuminides to get a picture of their chemical bonding and to
see general trends in their phase stability, and also to take a detailed look at the lattice and elastic constants of
AI3Ru. We have demonstrated the remarkable fact that, using the structural energy difference theorem and rigid
band model, one can predict the energy ordering ii A13Ru using the electronic structure of A13Ti, and vice versa.
The results of the rigid band calculations are also consistent with the trends in the phase stability of the transition
metal trialuminides, given that axial ratio distortions in the non cubic phases are unaccounted for in our model.
Accurate, full-potential calculations indicate distinct differences between AI3Ru and AI3Ti. We expect that Al3Ru
will deform similarly to AI3V, but may well have enhanced ductility since it has ideal axial ratio. Differences in
APB energy on the close-packed planes will be investigated in future work to confirm or deny this. Unlike other
transition metal trialuinides, AI3 Ru shows some promise of room temperature ductility, even though it, and its
ternary alloys, are unlikely to have a structure other than D022.

We thank Michael Methfessel for the use of his full-potential LMTO programs, and Julie Dubbs for preparing
the figures. ATP gratefully acknowledges support under AFOSR contract F49620-88-K-0009.
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